scholarly journals Striatonigrostriatal Circuit Architecture for Disinhibition of Dopamine Signaling

2021 ◽  
Author(s):  
Priscilla Ambrosi ◽  
Talia N Lerner

The basal ganglia operate largely in closed parallel loops, including an associative circuit for goal-directed behavior originating from the dorsomedial striatum (DMS) and a somatosensory circuit important for habit formation originating from the dorsolateral striatum (DLS). An exception to this parallel circuit organization has been proposed to explain how information might be transferred between striatal subregions, for example from DMS to DLS during habit formation. The "ascending spiral hypothesis" proposes that DMS disinhibits dopamine signaling in DLS through a tri-synaptic, open-loop striato-nigro-striatal circuit. Here, we used transsynaptic and intersectional genetic tools to investigate both closed- and open-loop striato-nigro-striatal circuits. We found strong evidence for closed loops, which would allow striatal subregions to regulate their own dopamine release. We also found evidence for functional synapses in open loops. However, these synapses were unable to modulate tonic dopamine neuron firing, questioning the prominence of their role in mediating crosstalk between striatal subregions.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. A. Nadel ◽  
S. S. Pawelko ◽  
J. R. Scott ◽  
R. McLaughlin ◽  
M. Fox ◽  
...  

AbstractHabits are inflexible behaviors that develop after extensive repetition, and overreliance on habits is a hallmark of many pathological states. The striatum is involved in the transition from flexible to inflexible responding, and interspersed throughout the striatum are patches, or striosomes, which make up ~15% of the volume of the striatum relative to the surrounding matrix compartment. Previous studies have suggested that patches are necessary for normal habit formation, but it remains unknown exactly how patches contribute to habit formation and expression. Here, using optogenetics, we stimulated striatal patches in Sepw1-NP67 mice during variable interval training (VI60), which is used to establish habitual responding. We found that activation of patches at reward retrieval resulted in elevated responding during VI60 training by modifying the pattern of head entry and pressing. Further, this optogenetic manipulation reduced subsequent responding following reinforcer devaluation, suggesting modified habit formation. However, patch stimulation did not generally increase extinction rates during a subsequent extinction probe, but did result in a small ‘extinction burst’, further suggesting goal-directed behavior. On the other hand, this manipulation had no effect in omission trials, where mice had to withhold responses to obtain rewards. Finally, we utilized fast-scan cyclic voltammetry to investigate how patch activation modifies evoked striatal dopamine release and found that optogenetic activation of patch projections to the substantia nigra pars compacta (SNc) is sufficient to suppress dopamine release in the dorsal striatum. Overall, this work provides novel insight into the role of the patch compartment in habit formation, and provides a potential mechanism for how patches modify habitual behavior by exerting control over dopamine signaling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meizhu Huang ◽  
Dapeng Li ◽  
Xinyu Cheng ◽  
Qing Pei ◽  
Zhiyong Xie ◽  
...  

AbstractAppetitive locomotion is essential for animals to approach rewards, such as food and prey. The neuronal circuitry controlling appetitive locomotion is unclear. In a goal-directed behavior—predatory hunting, we show an excitatory brain circuit from the superior colliculus (SC) to the substantia nigra pars compacta (SNc) to enhance appetitive locomotion in mice. This tectonigral pathway transmits locomotion-speed signals to dopamine neurons and triggers dopamine release in the dorsal striatum. Synaptic inactivation of this pathway impairs appetitive locomotion but not defensive locomotion. Conversely, activation of this pathway increases the speed and frequency of approach during predatory hunting, an effect that depends on the activities of SNc dopamine neurons. Together, these data reveal that the SC regulates locomotion-speed signals to SNc dopamine neurons to enhance appetitive locomotion in mice.


2016 ◽  
Vol 28 (04) ◽  
pp. 1650026
Author(s):  
K. Rouhollahi ◽  
M. Emadi Andani ◽  
S. M. Karbassi ◽  
M. Mojiri

Deep brain stimulation (DBS) is one of the most effective neurosurgical procedures to reduce Parkinsons tremor. The conventional method of DBS is open loop stimulation of one area of basal ganglia (BG). On the other hand, existing feedback causes the reduction of additional stimulatory signal delivered to the brain which results in the reduction of the side effects caused by the excessive stimulation intensity. Actually, the stimulatory intensity of the controllers is reduced proportionally by the reduction of hands tremor, which is in fact the intended rehabilitation of the disease. The meaningful objective of this study is to design an architecture of controllers to decrease three criteria. The first one is the hand’s tremor, the second one is the level of delivered stimulation signal to brain in disease condition and the third one is the ratio of the level of delivered stimulation signal in health condition to disease condition. In order to achieve these objectives, a new architecture of a closed loop control system to stimulate two areas of BG at the same time is presented. One area (STN: subthalamic nucleus) is stimulated with a state feedback (SF) controller (pole placement method) and the other area (GPi: globus pallidus internal) is stimulated with a partial state feedback controller (PSFC). Considering these criteria, the results illustrate that stimulating two areas leads to a suitable performance. Simulation results show that the PSF and SF controllers are robust enough to the variations of the system parameters. Moreover, we are able to estimate the parameters of BG model in real time; it is a valuable method to update the time variable parameters of this model.


2010 ◽  
Vol 104 (2) ◽  
pp. 922-931 ◽  
Author(s):  
Nii A. Addy ◽  
David P. Daberkow ◽  
Jeremy N. Ford ◽  
Paul A. Garris ◽  
R. Mark Wightman

Repeated cocaine exposure and withdrawal leads to long-term changes, including behavioral and dopamine sensitization to an acute cocaine challenge, that are most pronounced after long withdrawal periods. However, the changes in dopamine neurotransmission after short withdrawal periods are less well defined. To study dopamine neurotransmission after 1-day withdrawal, we used fast-scan cyclic voltammetry (FSCV) to determine whether repeated cocaine alters rapid dopamine release and uptake in the nucleus accumbens (NAc) core and shell. FSCV was performed in urethane anesthetized male Sprague-Dawley rats that had previously received one or seven daily injections of saline or cocaine (15 mg/kg, ip). In response to acute cocaine, subjects showed increased dopamine overflow that resulted from both increased dopamine release and slowed dopamine uptake. One-day cocaine pre-exposure, however, did not alter dopaminergic responses to a subsequent cocaine challenge. In contrast, 7-day cocaine-treated subjects showed a potentiated rapid dopamine response in both the core and shell after an acute cocaine challenge. In addition, kinetic analysis during the cocaine challenge showed a greater increase in apparent Km of 7-day cocaine exposed subjects. Together, the data provide the first in vivo demonstration of rapid dopamine sensitization in the NAc core and shell after a short withdrawal period. In addition, the data clearly delineate cocaine's release and uptake effects and suggest that the observed sensitization results from greater uptake inhibition in cocaine pre-exposed subjects.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Zhimin Shi ◽  
Zoe Piccus ◽  
Xiaofang Zhang ◽  
Huidi Yang ◽  
Hannah Jarrell ◽  
...  

miR-9 is an evolutionarily conserved miRNA that is abundantly expressed in Area X, a basal ganglia nucleus required for vocal learning in songbirds. Here, we report that overexpression of miR-9 in Area X of juvenile zebra finches impairs developmental vocal learning, resulting in a song with syllable omission, reduced similarity to the tutor song, and altered acoustic features. miR-9 overexpression in juveniles also leads to more variable song performance in adulthood, and abolishes social context-dependent modulation of song variability. We further show that these behavioral deficits are accompanied by downregulation of FoxP1 and FoxP2, genes that are known to be associated with language impairments, as well as by disruption of dopamine signaling and widespread changes in the expression of genes that are important in circuit development and functions. These findings demonstrate a vital role for miR-9 in basal ganglia function and vocal communication, suggesting that dysregulation of miR-9 in humans may contribute to language impairments and related neurodevelopmental disorders.


2014 ◽  
Vol 1036 ◽  
pp. 969-974
Author(s):  
Daniela Deacu

Radio frequency identification (RFID) is one of the most actual techniques employed to control the circuit of merchandises, as an alternative to the classical barecode. RFID tags should be cheap and easy to reproduct on a multitude of dielectric supports. There are several types of RFID systems, depending on whether tag and/or reader are active or passive. For cost reasons, merchandise identification should use active reader and passive tag, as the latter might be manufactured on a cheap FR4 support or printed directly on paper, by using a conductive ink. Passive tags can be shaped as straight dipoles, meandered dipoles, or loops. When a small area is required, loops are more appropriated. Codes are made different one from another by using on the same tag antennas with different resonance frequencies. Another advantage of loops is that they can be placed one inside other, so the occupied area is even smaller compared to other multi-resonant tags. Firstly, a single loop is analyzed, in order to model the resonant behaviour, correlated to the loop geometry and size. Open and closed loops are studied; the lowest resonance frequency for a given loop length is achieved for the open loop. In that case, the loop is resonating as a dipole. Next, a tag with three concentric loops is investigated. Separately, a small loop is used on the tag, in order to couple the received power in a resistor. When the tag is close to the reader, the latter is triggered if power is absorbed simultaneously on the three expected frequencies. The proposed tag was simulated and manufactured. Results show a good agreement between measured and simulated data. Finally, a block diagram for the reader was proposed.


2007 ◽  
Vol 27 (52) ◽  
pp. 14434-14441 ◽  
Author(s):  
G. Garraux ◽  
P. Peigneux ◽  
R. E. Carson ◽  
M. Hallett

2020 ◽  
Author(s):  
Elizabeth N. Holly ◽  
M. Felicia Davatolhagh ◽  
Rodrigo A. España ◽  
Marc V. Fuccillo

Low-threshold spiking interneurons (LTSIs) in the dorsomedial striatum are potent modulators of goal-directed learning. Here, we uncover a novel function for LTSIs in locally and directly gating striatal dopamine, using in vitro fast scan cyclic voltammetry as well as in vivo GRAB-DA sensor imaging and pharmacology during operant learning. We demonstrate that LTSIs, acting via GABAB signaling, attenuate dopamine release, thereby serving as local coordinators of striatal plasticity.


2011 ◽  
Vol 23 (5) ◽  
pp. 1218-1229 ◽  
Author(s):  
Sanne de Wit ◽  
Roger A. Barker ◽  
Anthony D. Dickinson ◽  
Roshan Cools

This study presents the first direct investigation of the hypothesis that dopamine depletion of the dorsal striatum in mild Parkinson disease leads to impaired stimulus–response habit formation, thereby rendering behavior slow and effortful. However, using an instrumental conflict task, we show that patients are able to rely on direct stimulus–response associations when a goal-directed strategy causes response conflict, suggesting that habit formation is not impaired. If anything our results suggest a disease severity–dependent deficit in goal-directed behavior. These results are discussed in the context of Parkinson disease and the neurobiology of habitual and goal-directed behavior.


Sign in / Sign up

Export Citation Format

Share Document