circuit input
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mike Gilbert

AbstractThis paper presents a model of rate coding in the cerebellar cortex. The pathway of input to output of the cerebellum forms an anatomically repeating, functionally modular network, whose basic wiring is preserved across vertebrate taxa. Each network is bisected centrally by a functionally defined cell group, a microzone, which forms part of the cerebellar circuit. Input to a network may be from tens of thousands of concurrently active mossy fibres. The model claims to quantify the conversion of input rates into the code received by a microzone. Recoding on entry converts input rates into an internal code which is homogenised in the functional equivalent of an imaginary plane, occupied by the centrally positioned microzone. Homogenised means the code exists in any random sample of parallel fibre signals over a minimum number. The nature of the code and the regimented architecture of the cerebellar cortex mean that the threshold can be represented by space so that the threshold can be met by the physical dimensions of the Purkinje cell dendritic arbour and planar interneuron networks. As a result, the whole population of a microzone receives the same code. This is part of a mechanism which orchestrates functionally indivisible behaviour of the cerebellar circuit and is necessary for coordinated control of the output cells of the circuit. In this model, fine control of Purkinje cells is by input rates to the system and not by learning so that it is in conflict with the for-years-dominant supervised learning model.


Author(s):  
Nurfarahin Ishak ◽  
Chua King Lee ◽  
Siti Zarina Mohd Muji ◽  
Abdul Azlin Bin Abdul Latip

Magnetic induction tomography (MIT) is an imaging modality focused on tracing the transmission of electrical conductivity within the body. This technique used to image electromagnetic properties of an object by using the eddy current effect. This paper explains the primary analog transceiver circuit of MIT. This is a surrogate design of the analog system in the electronic components for pattern recognition and conditioning. This MIT system operating with a single excitation signal frequency at 10MHz. The input voltage received by the receiver sensor would become the circuit input which contained information. The four stages process in the receiver circuit successfully captured the signal from the transmitter. These subsystems have their functions and can be put into effect in many ways. Therefore, the circuit was used to be reliable at agarwood samples. The approach transceiver circuit were successful and functional for MIT coil sensing. The input voltage feedback depending on the conductivity of the samples. As the dielectric properties of samples are high, the input voltage at the receiver also high. Therefore, 10MHz can use for agriculture while this range of frequency is usually used in biomedical applications. Series – parallel circuit gives a greater induction factor and therefore more induced voltage for the load of the receiver.


AVITEC ◽  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Siti Nur Alima ◽  
Mila Fauziyah ◽  
Denda Dewatama

Induction motors are widely used in the industrial world, home-based businesses as well as in households. Currently in the process of making tofu an induction motor is used as a motor to drive soy blending blades. At this time the use of induction motors is still manually by requiring the operator to regulate the speed of the motor. To reduce operator work, it is necessary to apply PI control as a motor speed controller so that a constant motor rotation is obtained. 1 phase induction motor can be adjusted with variable speed drive (VSD) 0.75KW 1 phase. Blending blade drive uses 0.5HP 1 phase induction motor. In the application of PI control requires some hardware namely Arduino Uno as a minimum system that gives PWM circuit input commands. And the speed sensor as a motor blending speed reader. PI tuning values obtained from the application of the Ziegerl-Nichols I method with the best Kp and Ki tuning values are 1.35 and 0.02673. This research was conducted with 3 speed variables namely 1400 rpm, 1300 and 1200 rpm. From the application of Kp and Ki tuning values, the smallest error value is 4.08% at 1400 rpm with the system response time peak (tp) 5s, rise time (tr) 3s faster, delay time (td) 3s, and settling time (ts) 9s , and a maximum overshoot of 9.8%.


2019 ◽  
Vol 3 (2) ◽  
pp. 251-256
Author(s):  
Anggara Nasution ◽  
Era Madona ◽  
Muhammad Irmansyah

The purpose of the design and application of the ATMEGA8535 microcontroller system simulation circuit is minimize the damage of the practicum module, helping students improve their understanding of practicum goals through maximum frequency of practices. Every year damage the practicum module avr8535 increased. Based on the analysis, the damage of this module is mostly caused by the damage of the main component, namely the IC ATMEGA8535. This happen because a maximum of program downloading to the IC ATMEGA8535 is 1000 times and this ability can even be less if the operation procedure of the module is incorrect. This simulation software utilizes the facilities contained in the proteus software. The steps to make this simulation circuit are doing the needs analysis, designed the basic circuit, ouput circuit, input circuit, and ADC circuit. The test results show all units of the circuit can run according to the practicum module. This simulation circuit has been implemented in microcontroller practicum activities and interfacing as companion software. There was a decrease in module damage of 57.60% after the implementation of simulation circuit. With this simulation software programs that have been created can be loaded first into a simulations circuit, so they can extend the life time of the practicum module and can help lecturers in developing lecture material and maximize the understanding of learning for students through practical activities.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Sebastian Różowicz ◽  
Andrzej Zawadzki

This paper addresses the problem of nonlinear electrical circuit input-output linearization. The transformation algorithms for linearization of nonlinear system through changing coordinates (local diffeomorphism) with the use of closed feedback loop together with the conditions necessary for linearization are presented. The linearization stages and the results of numerical simulations are discussed.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850090
Author(s):  
Amin Alahyari ◽  
Massoud Dousti ◽  
Mohammad Bagher Tavakoli

In this paper, a new structure for an integrated channelized active filter is proposed. This filter can be used as a channelized bandpass filter and again as a channelized band-stop filter. This is fulfilled by using one biasing voltage. In designing a three-channel bandpass filter, a recursive differential structure is used. Moreover, by subtracting bandpass filter output from an all-pass output, the proposed three-channel band-stop filter is achieved. A wideband amplifier plays the role of an all-pass filter. In addition, to decrease the noise of this filter, a noise-canceling circuit is adopted. By using this circuit, input impedance matching is obtained simultaneously. The center frequencies of the two-mode channelized filter are 2, 4 and 6[Formula: see text]GHz. In each of them, the center frequency is controlled via two biasing voltages. The maximum center frequency shift is 450[Formula: see text]MHz. For designing the proposed circuit, GaAs 0.15[Formula: see text][Formula: see text]m technology is applied. The occupied area is [Formula: see text][Formula: see text]mm2.


Sign in / Sign up

Export Citation Format

Share Document