benzoate degradation
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 16)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 4 (12) ◽  
pp. e202101167
Author(s):  
João Pedro Saraiva ◽  
Alexandre Bartholomäus ◽  
René Kallies ◽  
Marta Gomes ◽  
Marcos Bicalho ◽  
...  

The high complexity found in microbial communities makes the identification of microbial interactions challenging. To address this challenge, we present OrtSuite, a flexible workflow to predict putative microbial interactions based on genomic content of microbial communities and targeted to specific ecosystem processes. The pipeline is composed of three user-friendly bash commands. OrtSuite combines ortholog clustering with genome annotation strategies limited to user-defined sets of functions allowing for hypothesis-driven data analysis such as assessing microbial interactions in specific ecosystems. OrtSuite matched, on average, 96% of experimentally verified KEGG orthologs involved in benzoate degradation in a known group of benzoate degraders. We evaluated the identification of putative synergistic species interactions using the sequenced genomes of an independent study that had previously proposed potential species interactions in benzoate degradation. OrtSuite is an easy-to-use workflow that allows for rapid functional annotation based on a user-curated database and can easily be extended to ecosystem processes where connections between genes and reactions are known. OrtSuite is an open-source software available at https://github.com/mdsufz/OrtSuite.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Jiang ◽  
Shuang Hu ◽  
Bing Peng ◽  
Zhenhao Li ◽  
Xiaohui Yuan ◽  
...  

Ganoderma tsugae is an endemic medicinal mushroom in Northeast China, providing important source of pharmaceutical product. Comparing with other Ganoderma species, wild G. tsugae can utilize coniferous wood. However, functional genes related to medicinal component synthesis and the genetic mechanism of conifer substrate utilization is still obscure. Here, we assembled a high-quality G. tsugae genome with 18 contigs and 98.5% BUSCO genes and performed the comparative genomics with other Ganoderma species. G. tsugae diverged from their common ancestor of G. lingzhi and G. sinense about 21 million years ago. Genes in G. tsugae-specific and G. tsugae-expanded gene families, such as salh, phea, cyp53a1, and cyp102a, and positively selected genes, such as glpk and amie, were functionally enriched in plant-pathogen interaction, benzoate degradation, and fanconi anemia pathway. Those functional genes might contribute to conifer substrate utilization of G. tsugae. Meanwhile, gene families in the terpene synthesis were identified and genome-wide SNP variants were detected in population. Finally, the study provided valuable genomic resources and offered useful hints for the functional gene mapping and investigation of key gene contributing to conifer cultivation substrate utilization and medicinal component biosynthesis.


2021 ◽  
Author(s):  
João Pedro Saraiva ◽  
Alexandre Bartholomäus ◽  
René Kallies ◽  
Marta Gomes ◽  
Marcos Bicalho ◽  
...  

Abstract The high complexity found in microbial communities makes the identification of microbial interactions challenging. To address this challenge, we present OrtSuite, a flexible workflow to predict putative microbial interactions based on genomic content of microbial communities and targeted to specific ecosystem processes. The pipeline is composed of three user-friendly bash commands. OrtSuite combines ortholog clustering with genome annotation strategies limited to user-defined sets of functions allowing for hypothesis-driven data analysis such as assessing microbial interactions in specific ecosystems. OrtSuite matched, on average, 96 % of experimentally verified KEGG orthologs involved in benzoate degradation in a known group of benzoate degraders. We evaluated the identification of putative synergistic species interactions using the sequenced genomes of an independent study that had previously proposed potential species interactions in benzoate degradation. OrtSuite is an easy-to-use workflow that allows for rapid functional annotation based on a user-curated database and can easily be extended to ecosystem processes where connections between genes and reactions are known. OrtSuite is an open-source software available at https://github.com/mdsufz/OrtSuite.


2021 ◽  
Author(s):  
Eric Sanchez-Lopez ◽  
Temidayo Oluyomi Elufisan ◽  
Patricia Bustos ◽  
Claudia Paola Charles-Mendoza ◽  
Alberto Mendoza-Hererra ◽  
...  

Abstract Sphingobium yanoikuyae S72 was isolated from the rhizosphere of sorghum plant, Mexico. Its role on the degradation of polycyclic aromatic hydrocarbon (PAH) was evaluated in a minimal medium containing one of biphenyl, naphthalene, phenanthrene, xylene and Toluene as the only carbon source. It grew effectively in each minimal medium (Bushnell Haas, BH). Gas column chromatography–mass spectrometry (GC-MS) analysis on the metabolite recovered after S72’s growth in BH showed that it successfully degraded the PAHs tested resulting in the degradation of biphenyl (85%), phenanthrene (93%), naphthalene (81%), xylene (19%) and toluene (30%). The complete genome of the S72 was sequenced to evaluate the genetic bases of S72`s degradation of PAH. The genome was assembled de novo and reduced to 1 contig and consists of 5,532,623 bp, 5005 protein-coding genes. The analysis of the COG categories in S72 in comparison with other Sphingobium yanoikuyae and other PAH degrading gene, showed that it has in higher abundance in some categories that have been associated with the degradation of PAH (energy production and conversion (COG C, 6.35), carbohydrate transport and metabolism (COG G, 6.20%), lipid transport and metabolism (COG I, 6.99), secondary metabolites biosynthesis (COG Q, 4.52%), general function prediction only in transport and catabolism (COG R, 9.93),) Pan-core genome analysis revealed that about 126 unique genes in S72 are associated with the degradation of xenobiotics and PAHs. Most gene found in S72 are associated with the peripheral degradation pathway for PAH. Based on our observation we proposed a possible benzoate degradation pathway.


2021 ◽  
Author(s):  
Khairun Nisha ◽  
Jithin S Sunny ◽  
Anuradha Natrajan ◽  
Lilly M. Saleena

Abstract Understanding the diversity and functioning of microbial communities in acidic marsh land is extremely less investigated in contrast to soils and aquatic ecosystems. This study implemented Illumina high-throughput sequencing to explore the microbial communities and xenobiotic degrading enzymes in the acidic marshland. Taxonomic analysis using SILVA SSU database stated that Proteobacteria (66.74 %), Bacteroidetes (6.98%) and acidobacteria (2.35 %) were the most abundant phylum in the acidic marshland. Functional analysis by SEED subsystems showed that 1.62 % substitute to metabolism of aromatic compound while KO indicates 1.86% of metabolism are involved in xenobiotic biodegradation. KO analysis also indicated the benzoate degradation pathway (ko00362) are predominant while Chlorocyclohexane and chlorobenzene degradation pathway (ko00361), Polycyclic aromatic hydrocarbon degradation pathway (ko00624) Aminobenzoate degradation pathway (ko00627) is largely present in the acidic marshland.


2021 ◽  
Author(s):  
Joao Pedro Saraiva ◽  
Alexandre Bartholomäus ◽  
René Kallies ◽  
Marta Gomes ◽  
Marcos Vinicios Fleming Bicalho ◽  
...  

The high complexity found in microbial communities makes the identification of microbial interactions challenging. To address this challenge, we present OrtSuite, a flexible workflow to predict putative microbial interactions based on genomic content of microbial communities and targeted to specific ecosystem processes. The pipeline is composed of three user-friendly bash commands. OrtSuite combines ortholog clustering with genome annotation strategies limited to user-defined sets of functions allowing for hypothesis-driven data analysis such as assessing microbial interactions in specific ecosystems. OrtSuite matched, on average, 96 % of experimentally verified KEGG orthologs involved in benzoate degradation in a known group of benzoate degraders. Identification of putative synergistic species interactions was evaluated using the sequenced genomes of an independent study which had previously proposed potential species interactions in benzoate degradation. OrtSuite is an easy to use workflow that allows for rapid functional annotation based on a user curated database and can easily be extended to ecosystem processes where connections between genes and reactions are known. OrtSuite is an open-source software available at https://github.com/mdsufz/OrtSuite.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3263
Author(s):  
Agnieszka Cydzik-Kwiatkowska ◽  
Martyna Grzyb ◽  
Piotr Jachimowicz

Understanding of the metabolic pathways connected with a removal of micropollutant bisphenol A (BPA) may help to better design effective wastewater treatment processes. The aim of this study was to determine changes in gene expression in an aerobic granular sludge (AGS) community exposed to BPA. In the study, AGS adapted to BPA degradation was used. In this sludge, BPA was dosed; as a control sample, granules without BPA addition were used. mRNA was isolated from both samples and sequenced using the Illumina platform. Metatranscriptome analysis of AGS exposed to BPA indicated direct biodegradation as the main mechanism of BPA removal from wastewater. High expression of genes coding pilus and flagellin proteins in the BPA-exposed biomass indicated that exposition to BPA stimulated aggregation of microbial cells and formation of biofilm. In the BPA-exposed biomass, nitrogen was mainly used as an energy source, as indicated by the presence of genes coding nitrification enzymes and urease. Moreover, exposition to BPA stimulated expression of genes coding proteins responsible for xenobiotic degradation, including enzymes responsible for benzoate degradation. These results increase knowledge about BPA metabolism in complex microbial communities in wastewater treatment systems and indicate that AGS is suitable for efficiently removing BPA from wastewater.


2021 ◽  
Vol 9 (4) ◽  
pp. 755
Author(s):  
Tatiana Z. Esikova ◽  
Tatiana O. Anokhina ◽  
Tatiana N. Abashina ◽  
Nataliya E. Suzina ◽  
Inna P. Solyanikova

The intensive development of agriculture leads to the depletion of land and a decrease in crop yields and in plant resistances to diseases. A large number of fertilizers and pesticides are currently used to solve these problems. Chemicals can enter the soil and penetrate into the groundwater and agricultural plants. Therefore, the primary task is to intensify agricultural production without causing additional damage to the environment. This problem can be partially solved using microorganisms with target properties. Microorganisms that combine several useful traits are especially valuable. The aim of this work was to search for new microbial strains, which are characterized by the ability to increase the bioavailability of nutrients, phytostimulation, the antifungal effect and the decomposition of some xenobiotics. A few isolated strains of the genera Bacillus and Pseudomonas were characterized by high activity against fungal phytopathogens. One of the bacterial strains identified as Priestiaaryabhattai on the basis of the 16S rRNA gene sequence was characterized by an unusual cellular morphology and development cycle, significantly different from all previously described bacteria of this genus. All isolated bacteria are capable of benzoate degradation as a sign of the ability to degrade aromatic compounds. Isolated strains were shown to be prospective agents in biotechnologies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Purvi Zaveri ◽  
Aishwarya Raghu Iyer ◽  
Rushika Patel ◽  
Nasreen Shakil Munshi

A model aromatic compound, sodium benzoate, is generally used for simulating aromatic pollutants present in textile effluents. Bioremediation of sodium benzoate was studied using the most abundant bacteria, Pseudomonas citronellolis, isolated from the effluent treatment plants of South Gujarat, India. Multiple nutrients constituting the effluent in actual conditions are proposed to have interactive effects on biodegradation which needs to be analyzed strategically for successful field application of developed bioremediation process. Two explicitly different sets of fractional factorial designs were used to investigate the interactive influence of alternative carbon, nitrogen sources, and inorganic micronutrients on sodium benzoate degradation. The process was negatively influenced by the co-existence of other carbon sources and higher concentration of KH2PO4 whereas NH4Cl and MgSO4 exhibited positive effects. Optimized concentrations of NH4Cl, MgSO4, and KH2PO4 were found to be 0.35, 1.056, and 0.3 mg L–1 respectively by central composite designing. The negative effect of high amount of KH2PO4 could be ameliorated by increasing the amount of NH4Cl in the biodegradation milieu indicating the possibility of restoration of the degradation capability for sodium benzoate degradation in the presence of higher phosphate concentration.


Proceedings ◽  
2020 ◽  
Vol 66 (1) ◽  
pp. 2
Author(s):  
Tatiana O. Anokhina ◽  
Tatiana Z. Esikova ◽  
Tatiana N. Abashina ◽  
Nataliya E. Suzina ◽  
Inna P. Solyanikova

The intensive development of agriculture leads to the depletion of land and a decrease in crop yields and in plant resistance to diseases. A large number of fertilizers and pesticides are currently used to solve these problems. Chemicals can enter the soil and penetrate into the groundwater and agricultural plants. Therefore, the primary task is to intensify agricultural production without causing additional damage to the environment. This problem can be partially solved using microorganisms with target properties. Microorganisms that combine several useful traits are especially valuable. The aim of this work was to search for new microbial strains that possess a complex, technologically significant potential, such as increasing the bioavailability of nutrients, phytostimulation, antifungal effect and degradation of pesticide residues and other xenobiotics. Few isolated Bacillus and Pseudomonas strains were characterized by high activity against fungal phytopathogens. One of the bacterial strains identified as Bacillus sp. on the basis of the 16S rRNA gene sequence was characterized by an unusual cellular morphology and development cycle, significantly different from all previously described bacteria of this genus. All isolated bacteria are capable of benzoate degradation, as a sign of the ability to degrade aromatic compounds. Isolated strains were shown to be perspective agents in biotechnologies.


Sign in / Sign up

Export Citation Format

Share Document