mechanosensory transduction
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 13)

H-INDEX

22
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Johannes Elferich ◽  
Sarah Clark ◽  
Jingpeng Ge ◽  
April Goehring ◽  
Aya Matsui ◽  
...  

Mechanosensory transduction (MT), the conversion of mechanical stimuli into electrical signals, underpins hearing and balance and is carried out within hair cells in the inner ear. Hair cells harbor actin-filled stereocilia, arranged in rows of descending heights, where the tips of stereocilia are connected to their taller neighbors by a filament composed of protocadherin 15 (PCDH15) and cadherin 23 (CDH23), deemed the ‘tip link’. Tension exerted on the tip link opens an ion channel at the tip of the shorter stereocilia, thus converting mechanical force into an electrical signal. While biochemical and structural studies have provided insights into the molecular composition and structure of isolated portions of the tip link, the architecture, location and conformational states of intact tip links, on stereocilia, remains unknown. Here we report in situ cryo-electron microscopy imaging of the tip link in mouse stereocilia. We observe individual PCDH15 molecules at the tip and shaft of stereocilia and determine their stoichiometry, conformational heterogeneity, and their complexes with other filamentous proteins, perhaps including CDH23. The PCDH15 complexes occur in clusters, frequently with more than one copy of PCDH15 at the tip of stereocilia, suggesting that tip links might consist of more than one copy of PCDH15 complexes and, by extension, might include multiple MT complexes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shiina Matsuyama ◽  
Yuki Tanaka ◽  
Rie Hasebe ◽  
Shintaro Hojyo ◽  
Masaaki Murakami

SummaryThe gateway reflex explains how autoreactive CD4+ T cells cause inflammation in tissues that have blood-barriers, such as the central nervous system and retina. It depends on neural activations in response to specific external stimuli, such as gravity, pain, stress, and light, which lead to the secretion of noradrenaline at specific vessels in the tissues. Noradrenaline activates NFkB at these vessels, followed by an increase of chemokine expression as well as a reduction of tight junction molecules to accumulate autoreactive CD4+ T cells, which breach blood-barriers. Transient receptor potential vanilloid 1 (TRPV1) molecules on sensory neurons are critical for the gateway reflex, indicating the importance of mechano-sensing. In this review, we overview the gateway reflex with a special interest in mechanosensory transduction (mechanotransduction).


2021 ◽  
Author(s):  
Johannes Elferich ◽  
Sarah Clark ◽  
Jingpeng Ge ◽  
April Goehring ◽  
Aya Matsui ◽  
...  

AbstractMechanosensory transduction (MT), the conversion of mechanical stimuli into electrical signals, underpins hearing and balance and is carried out within hair cells in the inner ear. Hair cells harbor actin-filled stereocilia, arranged in rows of descending heights, where the tips of stereocilia are connected to their taller neighbors by a filament composed of protocadherin 15 (PCDH15) and cadherin 23 (CDH23), deemed the ‘tip-link’. Tension exerted on the tip-link opens an ion channel at the tip of the shorter stereocilia, thus converting mechanical force into an electrical signal. While biochemical and structural studies have provided insights into the molecular composition and structure of isolated portions of the tip-link, the architecture, location and conformational states of intact tip-links, on stereocilia, remains unknown. Here we report in situ cryo-electron microscopy imaging of the tip-link in mouse stereocilia. We observe individual PCDH15 molecules at the tip and shaft of stereocilia and determine their stoichiometry, conformational heterogeneity, and their complexes with CDH23. The PCDH15/CDH23 complexes occur in clusters, frequently with more than one copy of PCDH15 at the tip of stereocilia, suggesting that tip-links might consist of more than one copy of the PCDH15/CDH23 heterotetramer and by extension, might include multiple MT complexes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica A. G. Johnson ◽  
Hongxia Liu ◽  
Ulli Höger ◽  
Samantha M. Rogers ◽  
Kajanan Sivapalan ◽  
...  

AbstractMechanosensory neurons use mechanotransduction (MET) ion channels to detect mechanical forces and displacements. Proteins that function as MET channels have appeared multiple times during evolution and occur in at least four different families: the DEG/ENaC and TRP channels, as well as the TMC and Piezo proteins. We found twelve putative members of MET channel families in two spider transcriptomes, but detected only one, the Piezo protein, by in situ hybridization in their mechanosensory neurons. In contrast, probes for orthologs of TRP, ENaC or TMC genes that code MET channels in other species did not produce any signals in these cells. An antibody against C. salei Piezo detected the protein in all parts of their mechanosensory cells and in many neurons of the CNS. Unspecific blockers of MET channels, Ruthenium Red and GsMTx4, had no effect on the mechanically activated currents of the mechanosensory VS-3 neurons, but the latter toxin reduced action potential firing when these cells were stimulated electrically. The Piezo protein is expressed throughout the spider nervous system including the mechanosensory neurons. It is possible that it contributes to mechanosensory transduction in spider mechanosensilla, but it must have other functions in peripheral and central neurons.


2020 ◽  
Author(s):  
Yang Guo ◽  
Ze-Yan Yu ◽  
Jianxin Wu ◽  
Hutao Gong ◽  
Scott Kesteven ◽  
...  

AbstractPathological left ventricular hypertrophy (LVH) is a consequence of pressure overload caused by systemic hypertension or aortic stenosis and is a strong predictor of cardiac failure and mortality. Understanding the molecular pathways in the development of pathological LVH may lead to more effective treatment. Here, we show that the transient receptor potential cation channel subfamily melastatin 4 (TRPM4) ion channel is an important contributor to the mechanosensory transduction of pressure overload that induces LVH. In mice with pressure overload induced by transverse aortic constriction (TAC) for two weeks, cardiomyocyte TRPM4 expression was reduced, as compared to control mice. Cardiomyocyte-specific TRPM4 inactivation reduced by ~50% the degree of TAC-induced LVH, as compared with wild type (WT). In WT mice, TAC activated the CaMKIIδ-HDAC4-MEF2A but not the calcineurin-NFAT-GATA4 pathway. In TRPM4 knock-out mice, activation of the CaMKIIδ-HDAC4-MEF2A pathway by TAC was significantly reduced. However, consistent with a reduction in the known inhibitory effect of CaMKIIδ on calcineurin activity, reduction in the CaMKIIδ-HDAC4-MEF2A pathway was associated with partial activation of the calcineurin-NFAT-GATA4 pathway. These findings indicate that the TRPM4 channel and its cognate signalling pathway are potential novel therapeutic targets for the prevention of pathological pressure overload-induced LVH.Significance statementPathological left ventricular hypertrophy (LVH) occurs in response to pressure overload and remains the single most important clinical predictor of cardiac mortality. Preventing pressure overload LVH is a major goal of therapeutic intervention. Current treatments aim to remove the stimulus for LVH by lowering elevated blood pressure or replacing a stenotic aortic valve. However, neither of these interventions completely reverses adverse cardiac remodelling. Although numerous molecular signalling steps in the induction of LVH have been identified, the initial step by which mechanical stretch associated with cardiac pressure overload is converted into a chemical signal that initiates hypertrophic signalling, remains unresolved. Here, we demonstrate that the TRPM4 channel is a component of the mechanosensory transduction pathway that ultimately leads to LVH.


2020 ◽  
Author(s):  
Jessica Johnson ◽  
Hongxia Liu ◽  
Ulli Höger ◽  
Samantha Rogers ◽  
Kajanan Sivapalan ◽  
...  

Abstract Mechanosensory neurons use mechanotransduction (MET) ion channels to detect mechanical forces and displacements. Proteins that function as MET channels have appeared multiple times during evolution and occur in at least four different families; the DEG/ENaC and TRP channels, and the TMC and Piezo proteins. We found twelve putative members of MET channel families in two spider transcriptomes, but detected only one, the Piezo protein, by in situ hybridization in their mechanosensory neurons. In contrast, probes for orthologs of TRP, ENaC or TMC genes that code MET channels in other species did not produce any signals in these cells. An antibody against C. salei Piezo detected the protein in all parts of their mechanosensory cells and in many neurons of the CNS. Unspecific blockers of MET channels, Ruthenium Red and GsMTx4, had no effect on the mechanically activated currents of the mechanosensory VS‑3 neurons, but the latter toxin reduced action potential firing when these cells were stimulated electrically. It is possible that the Piezo protein contributes to mechanosensory transduction in spider mechanosensilla, but it must have other functions in peripheral and central neurons.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Wang Zheng ◽  
Jeffrey R. Holt

Sound-induced mechanical stimuli are detected by elaborate mechanosensory transduction (MT) machinery in highly specialized hair cells of the inner ear. Genetic studies of inherited deafness in the past decades have uncovered several molecular constituents of the MT complex, and intense debate has surrounded the molecular identity of the pore-forming subunits. How the MT components function in concert in response to physical stimulation is not fully understood. In this review, we summarize and discuss multiple lines of evidence supporting the hypothesis that transmembrane channel-like 1 is a long-sought MT channel subunit. We also review specific roles of other components of the MT complex, including protocadherin 15, cadherin 23, lipoma HMGIC fusion partner-like 5, transmembrane inner ear, calcium and integrin-binding family member 2, and ankyrins. Based on these recent advances, we propose a unifying theory of hair cell MT that may reconcile most of the functional discoveries obtained to date. Finally, we discuss key questions that need to be addressed for a comprehensive understanding of hair cell MT at molecular and atomic levels. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 6, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Philip Hehlert ◽  
Wei Zhang ◽  
Martin C. Göpfert

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Denise S Walker ◽  
William R Schafer

Mechanosensation is central to a wide range of functions, including tactile and pain perception, hearing, proprioception, and control of blood pressure, but identifying the molecules underlying mechanotransduction has proved challenging. In Caenorhabditis elegans, the avoidance response to gentle body touch is mediated by six touch receptor neurons (TRNs), and is dependent on MEC-4, a DEG/ENaC channel. We show that hemichannels containing the innexin protein UNC-7 are also essential for gentle touch in the TRNs, as well as harsh touch in both the TRNs and the PVD nociceptors. UNC-7 and MEC-4 do not colocalize, suggesting that their roles in mechanosensory transduction are independent. Heterologous expression of unc-7 in touch-insensitive chemosensory neurons confers ectopic touch sensitivity, indicating a specific role for UNC-7 hemichannels in mechanosensation. The unc-7 touch defect can be rescued by the homologous mouse gene Panx1 gene, thus, innexin/pannexin proteins may play broadly conserved roles in neuronal mechanotransduction.


Sign in / Sign up

Export Citation Format

Share Document