cyp1 gene
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2018 ◽  
Vol 2 (4) ◽  
pp. 42 ◽  
Author(s):  
Robin Geys ◽  
Marilyn De Graeve ◽  
Sofie Lodens ◽  
Jeroen Van Malderen ◽  
Christophe Lemmens ◽  
...  

Sophorolipids are one of the best known microbial biosurfactants and are produced by several yeast species. The best studied producer is Starmerella bombicola, a non-pathogenic yeast associated in nature with bumblebees. Sophorolipids are built up of the rare disaccharide sophorose, which is attached to a fatty acid through a glyosidic bound. Sophorolipids produced by S. bombicola mainly contain oleic acid as the incorporated hydrophobic group. Other chain lengths can, to a certain content, be incorporated by feeding the yeast with substrates of alternative chain lengths. However, the efficiency for such substrates is low as compared to the preferred C18 chain length and defined by the substrate specificity of the first enzymatic step in sophorolipid biosynthesis, i.e., the cytochrome P450 enzyme CYP52M1. To increase product uniformity and diversity at the same time, a new strain of S. bombicola was developed that produces sophorolipids with a palmitic acid acyl chain. This was achieved by heterologous expression of the cytochrome P450 cyp1 gene of Ustilago maydis and feeding with palmitic acid. Optimization of the production was done by protein and process engineering.





2009 ◽  
Vol 99 (10) ◽  
pp. 1142-1149 ◽  
Author(s):  
G. Marchand ◽  
W. Rémus-Borel ◽  
F. Chain ◽  
W. Hammami ◽  
F. Belzile ◽  
...  

Flocculosin is an antifungal cellobiose lipid linked to the biocontrol activity of Pseudozyma flocculosa and whose structure is very similar to that of ustilagic acid produced by Ustilago maydis. In this work, homologs of the U. maydis cyp1 gene, involved in the biosynthesis of ustilagic acid, were isolated and sequenced from P. flocculosa and P. fusiformata, the latter species being also known to produce ustilagic acid. Interestingly, no homologs were found in four other closely related Pseudozyma spp. from which no evidence of ustilagic acid production has ever been obtained, thus supporting the specificity of cyp1 with ustilagic acid synthesis. In addition, a homolog of the U. maydis uat1 gene involved in the acetylation of the molecule and located next to the cyp1 gene was partially sequenced from P. flocculosa. All three newly sequenced genes showed strong sequence similarity to their counterparts in U. maydis. Cyp1 expression was monitored in conditions that were either conducive or repressive to flocculosin production. Expression increased markedly (>100×) when P. flocculosa was inoculated in a growth medium conducive to flocculosin production but was rapidly downregulated in a repressive medium (in vitro) or on powdery mildew-infected cucumber leaves (in vivo). This suggests that the molecule was preferentially synthesized early in the process of searching for a growth substrate. This study provides the first identification of genes involved in the production of flocculosin, a molecule potentially associated with the biocontrol properties of P. flocculosa.



2007 ◽  
Vol 24 (12) ◽  
pp. 2619-2631 ◽  
Author(s):  
J. V. Goldstone ◽  
H. M. H. Goldstone ◽  
A. M. Morrison ◽  
A. Tarrant ◽  
S. E. Kern ◽  
...  


1988 ◽  
Vol 8 (6) ◽  
pp. 2275-2279 ◽  
Author(s):  
M E Cerdan ◽  
R S Zitomer

In Saccharomyces cerevisiae, the two genes, CYC1 and CYC7, that encode the isoforms of cytochrome c are expressed at different levels. Oxygen regulation is mediated by the expression of the CYP1 gene, and the CYP1 protein interacts with both CYC1 upstream activation sequence 1 (UAS1) and CYC7 UASo. In this study, the homology between the CYP1-binding sites of both genes was investigated. The most noticeable difference between the CYC1 and CYC7 UASs is the presence of GC base pairs at the same positions in a repeated sequence in CYC7 compared with CG base pairs in CYC1. Directed mutagenesis changing these GC residues to CG residues in CYC7 led to CYC1-like expression of CYC7 both in a CYP1 wild-type strain and in a strain carrying the semidominant mutation CYP1-16 which reverses the oxygen-dependent expression of the two genes. Our results strongly support the hypothesis that the CYP1-binding sites in CYC1 and CYC7 are related forms of the same sequence and that the CYP1-16 protein has altered specificity for the variant forms of the consensus sequences in both genes.



1988 ◽  
Vol 8 (6) ◽  
pp. 2275-2279
Author(s):  
M E Cerdan ◽  
R S Zitomer

In Saccharomyces cerevisiae, the two genes, CYC1 and CYC7, that encode the isoforms of cytochrome c are expressed at different levels. Oxygen regulation is mediated by the expression of the CYP1 gene, and the CYP1 protein interacts with both CYC1 upstream activation sequence 1 (UAS1) and CYC7 UASo. In this study, the homology between the CYP1-binding sites of both genes was investigated. The most noticeable difference between the CYC1 and CYC7 UASs is the presence of GC base pairs at the same positions in a repeated sequence in CYC7 compared with CG base pairs in CYC1. Directed mutagenesis changing these GC residues to CG residues in CYC7 led to CYC1-like expression of CYC7 both in a CYP1 wild-type strain and in a strain carrying the semidominant mutation CYP1-16 which reverses the oxygen-dependent expression of the two genes. Our results strongly support the hypothesis that the CYP1-binding sites in CYC1 and CYC7 are related forms of the same sequence and that the CYP1-16 protein has altered specificity for the variant forms of the consensus sequences in both genes.



Sign in / Sign up

Export Citation Format

Share Document