scholarly journals Identification of Genes Potentially Involved in the Biocontrol Activity of Pseudozyma flocculosa

2009 ◽  
Vol 99 (10) ◽  
pp. 1142-1149 ◽  
Author(s):  
G. Marchand ◽  
W. Rémus-Borel ◽  
F. Chain ◽  
W. Hammami ◽  
F. Belzile ◽  
...  

Flocculosin is an antifungal cellobiose lipid linked to the biocontrol activity of Pseudozyma flocculosa and whose structure is very similar to that of ustilagic acid produced by Ustilago maydis. In this work, homologs of the U. maydis cyp1 gene, involved in the biosynthesis of ustilagic acid, were isolated and sequenced from P. flocculosa and P. fusiformata, the latter species being also known to produce ustilagic acid. Interestingly, no homologs were found in four other closely related Pseudozyma spp. from which no evidence of ustilagic acid production has ever been obtained, thus supporting the specificity of cyp1 with ustilagic acid synthesis. In addition, a homolog of the U. maydis uat1 gene involved in the acetylation of the molecule and located next to the cyp1 gene was partially sequenced from P. flocculosa. All three newly sequenced genes showed strong sequence similarity to their counterparts in U. maydis. Cyp1 expression was monitored in conditions that were either conducive or repressive to flocculosin production. Expression increased markedly (>100×) when P. flocculosa was inoculated in a growth medium conducive to flocculosin production but was rapidly downregulated in a repressive medium (in vitro) or on powdery mildew-infected cucumber leaves (in vivo). This suggests that the molecule was preferentially synthesized early in the process of searching for a growth substrate. This study provides the first identification of genes involved in the production of flocculosin, a molecule potentially associated with the biocontrol properties of P. flocculosa.

Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 467-478 ◽  
Author(s):  
Rodger Voelker ◽  
Janet Mendel-Hartvig ◽  
Alice Barkan

A nuclear mutant of maize, tha1, which exhibited defects in the translocation of proteins across the thylakoid membrane, was described previously. A transposon insertion at the tha1 locus facilitated the cloning of portions of the tha1 gene. Strong sequence similarity with secA genes from bacteria, pea and spinach indicates that tha1 encodes a SecA homologue (cp-SecA). The tha1-ref allele is either null or nearly so, in that tha1 mRNA is undetectable in mutant leaves and cp-SecA accumulation is reduced ≥40-fold. These results, in conjunction with the mutant phenotype described previously, demonstrate that cp-SecA functions in vivo to facilitate the translocation of OEC33, PSI-F and plastocyanin but does not function in the translocation of OEC23 and OEC16. Our results confirm predictions for cp-Sed function made from the results of in vitro experiments and establish several new functions for cp-SecA, including roles in the targeting of a chloroplast-encoded protein, cytochrome f, and in protein targeting in the etioplast, a nonphotosynthetic plastid type. Our finding that the accumulation of properly targeted plastocyanin and cytochrome f in tha1-ref thylakoid membranes is reduced only a few-fold despite the near or complete absence of cp-SecA suggests that cp-SecA facilitates but is not essential in vivo for their translocation across the membrane.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Pei-Yao Liu ◽  
Cheng-Cheung Chen ◽  
Chia-Ying Chin ◽  
Te-Jung Liu ◽  
Wen-Chiuan Tsai ◽  
...  

AbstractIn obese adults, nonalcoholic fatty liver disease (NAFLD) is accompanied by multiple metabolic dysfunctions. Although upregulated hepatic fatty acid synthesis has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are yet to be elucidated. In this study, we reported upregulated expression of gene related to anergy in lymphocytes (GRAIL) in the livers of humans and mice with hepatic steatosis. Grail ablation markedly alleviated the high-fat diet-induced hepatic fat accumulation and expression of genes related to the lipid metabolism, in vitro and in vivo. Conversely, overexpression of GRAIL exacerbated lipid accumulation and enhanced the expression of lipid metabolic genes in mice and liver cells. Our results demonstrated that Grail regulated the lipid accumulation in hepatic steatosis via interaction with sirtuin 1. Thus, Grail poses as a significant molecular regulator in the development of NAFLD.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


2000 ◽  
Vol 27 (3) ◽  
pp. 221 ◽  
Author(s):  
Paraskevi Diakou ◽  
Laurence Svanella ◽  
Philippe Raymond ◽  
Jean-Pierre Gaudillère ◽  
Annick Moing

The protein level and regulation of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, involved in malic acid synthesis) was studied during the fruit development of two grape (Vitis vinifera L.) varieties, ‘Cabernet Sauvignon’ and ‘Gora Chirine’, with berries of normal and low organic acid content, respectively. The protein level and in vitro activity were higher in the low-acid variety than in the normal-acid variety for most stages. In vivo PEPC activity, measured using 14 CO2 labelling, was significantly higher in the low-acid variety than in the normal-acid variety about 1 week before and 1 week after veraison (the day which corresponds to the onset of ripening). However, partitioning into malate was the same for both varieties. Antibodies raised against the N-terminal part of SorghumPEPC recognised the grape berry PEPC, indicating the presence of the consensus phosphorylation site involved in PEPC regulation. PEPC phosphorylation status was estimated by studying sensitivity to pH and malate. Grape berry PEPC appeared more sensitive to low pH and malate during ripening (IC50 malate, 0.2–0.7 mM) compared to during the earlier stages of development (IC50 malate, 1.2–2 mM) for both varieties. Therefore, in the normal-acid variety, PEPC seems to participate in controlling malic acid accumulation but does not seem to control the differences in malic acid concentration observed between the two varieties.


1998 ◽  
Vol 275 (3) ◽  
pp. C870-C881 ◽  
Author(s):  
Ichiro Hisatome ◽  
Takayuki Morisaki ◽  
Hiroshi Kamma ◽  
Takako Sugama ◽  
Hiroko Morisaki ◽  
...  

AMP deaminase (AMPD) plays a central role in preserving the adenylate energy charge in myocytes following exercise and in producing intermediates for the citric acid cycle in muscle. Prior studies have demonstrated that AMPD1 binds to myosin heavy chain (MHC) in vitro; binding to the myofibril varies with the state of muscle contraction in vivo, and binding of AMPD1 to MHC is required for activation of this enzyme in myocytes. The present study has identified three domains in AMPD1 that influence binding of this enzyme to MHC using a cotransfection model that permits assessment of mutations introduced into the AMPD1 peptide. One domain that encompasses residues 178–333 of this 727-amino acid peptide is essential for binding of AMPD1 to MHC. This region of AMPD1 shares sequence similarity with several regions of titin, another MHC binding protein. Two additional domains regulate binding of this peptide to MHC in response to intracellular and extracellular signals. A nucleotide binding site, which is located at residues 660–674, controls binding of AMPD1 to MHC in response to changes in intracellular ATP concentration. Deletion analyses demonstrate that the amino-terminal 65 residues of AMPD1 play a critical role in modulating the sensitivity to ATP-induced inhibition of MHC binding. Alternative splicing of the AMPD1 gene product, which alters the sequence of residues 8–12, produces two AMPD1 isoforms that exhibit different MHC binding properties in the presence of ATP. These findings are discussed in the context of the various roles proposed for AMPD in energy production in the myocyte.


2000 ◽  
Vol 80 (1) ◽  
pp. 59-67 ◽  
Author(s):  
J. A. Moibi ◽  
R. J. Christopherson ◽  
E. K. Okine

Twenty-four wether lambs were randomly allocated to six treatments to investigate the effect of temperature and dietary lipid supplements on fatty acid synthesis and metabolic activity in sheep. The treatments consisted of four groups exposed to either cold (0 °C) or warm temperature (+23 °C) and given ad libitum access to either a control barley-based diet or with lipid supplementation. Two other groups were placed on the dietary regimen at 0 °C, but pair-fed to intake of animals in the +23 °C environment. At 5 wk, fatty acid synthesis was measured by [1-14C]acetate incorporation into tissue lipids. Cold exposure and dietary lipid supplementation had no effect (P > 0.05) on in vivo fatty acid synthesis rates in either longissimus dorsi or the liver. In both subcutaneous and mesenteric adipose tissue depots, the rate of acetate incorporation into tissue lipid was not significantly affected by cold exposure. In the perirenal fat depot, cold exposure increased (P < 0.05) the rate of fatty acid synthesis, while lipid supplementation decreased (P < 0.05) the rate in all tissue adipose depots. In vitro, mesenteric and perirenal adipose tissues from cold pair-fed animals had higher (P < 0.05) rates of fatty acid synthesis compared to tissues from animals in the warm environment. However, there was no effect of dietary lipid supplementation in these two fat depots. Metabolic heat production, and energy and nitrogen excretion by animals were increased (P < 0.05) by cold exposure while lipid supplementation had the opposite effect (P < 0.05). The relationship between average daily gain and feed intake was linear at both warm and cold environments, but with higher (P < 0.05) average daily gain at all levels of intake in the cold compared to the warm environment. Results indicate that both environment and diet regulate metabolic activity in sheep. However, there were differences in lipogenic response by tissues to the treatments. Key words: Environmental temperature, dietary lipid, fatty acid synthesis, metabolic rate, sheep


1973 ◽  
Vol 28 (1-2) ◽  
pp. 45-58 ◽  
Author(s):  
Hansjörg A. W. Schneider

The activities of enzymes related with chlorophyll and porphyrin synthesis have been examined during development and greening of young corn leaves. The enzymes succinyl-CoA-synthetase (SCoAS), δ-amino-levulinate synthetase (ALAS), δ-amino-levulinate dehydratase (ALAD) and the enzymes involved in porphobilinogenase (PBGA) were under investigaton. When leaves are illuminated and chlorophyll synthesis begins the activity of ALAD is not influenced. The activity of PBGA and SCoAS are slightly higher than in darkness, but the changes are below the range affecting chlorophyll biosynthesis. ALA, however, is only synthetized in the light. Synthesis ceases immediately when illuminiation ist stopped, indicating'that in darkness ALAS is not active. On the other hand ALAS is active in dark grown roots, tubers and other non-leaf tissues. Feeding the plant with succinate, glycine or α-keto-glutarate has no effect on chlorophyll synthesis, but the amount of ALA is reduced, whereas sucrose promotes its accumulation. The results are discussed with completely antitethaal results obtained with tissue cultures of tobacco and are integrated into a scheme which excludes the contrariety of hypotheses deduced from experi- ments with inhibitors of protein and nucleic acid synthesis. It is suggested that the varying results are caused by the action of light on different stages in differentiation of plastids and cells. In contrast to the enzymes SCoAS, ALAD and PBGA whose activities were determined in vitro, ALAS was assayed in vivo by means of the accumulation of (5-amino-levulinate (ALA) after blocking the enzyme ALAD by levulinate (LA). Optimum accumulation is observed when the concentration is about 2 · 10-2 м. LA is not converted to ALA in appreciable amounts. This could be proved by feeding the plants with 14C-LA which was prepared from uniformly labeled 14C-fructose.


1967 ◽  
Vol 105 (2) ◽  
pp. 779-782 ◽  
Author(s):  
F. Stirpe ◽  
L. Fiume

1. Injection of α-amanitin to mice causes a decreased incorporation of [6−14C]-orotic acid into liver RNA in vivo. 2. The activity of RNA polymerase activated by Mn2+ and ammonium sulphate is greatly impaired in liver nuclei isolated from mice poisoned with α-amanitin, and is inhibited by the addition of the same toxin in vitro. 3. The activity of the Mg2+-activated RNA polymerase is only slightly affected by α-amanitin either administered to mice or added in vitro.


2001 ◽  
Vol 359 (3) ◽  
pp. 557-565 ◽  
Author(s):  
Benjamin MILLOT ◽  
Marie-Louise FONTAINE ◽  
Dominique THEPOT ◽  
Eve DEVINOY

The aim of the present study was to identify the functional domains of the upstream region of the rabbit whey acidic protein (WAP) gene, which has been used with considerable efficacy to target the expression of several foreign genes to the mammary gland. We have shown that this region exhibits three sites hypersensitive to DNase I digestion in the lactating mammary gland, and that all three sites harbour elements which can bind to Stat5 in vitro in bandshift assays. However, not all hypersensitive regions are detected at all stages from pregnancy to weaning, and the level of activated Stat5 detected in the rabbit mammary gland is low except during lactation. We have studied the role of the distal site, which is only detected during lactation, in further detail. It is located within a 849bp region that is required to induce a strong expression of the chloramphenicol acetyltransferase reporter gene in transfected mammary cells. Taken together, these results suggest that this region, centred around a Stat5-binding site and surrounded by a variable chromatin structure during the pregnancy–lactation cycle, may play a key role in regulating the expression of this gene in vivo. Furthermore, this distal region exhibits sequence similarity with a region located around 3kb upstream of the mouse WAP gene. The existence of such a distal region in the mouse WAP gene may explain the differences in expression between 4.1 and 2.1kb mouse WAP constructs.


Sign in / Sign up

Export Citation Format

Share Document