scholarly journals A Region Within the Third Extracellular Loop of Rat AQP6 Precludes Its Trafficking to Plasma Membrane in a Heterologous Cell Line.

Author(s):  
David Soler ◽  
Thomas Kowatz ◽  
Andrew Sloan ◽  
Thomas McCormick ◽  
Kevin Cooper ◽  
...  

Abstract The inability to over-express AQP6 in the plasma membrane of heterologous cells has hampered efforts to further characterize the function of this aquaglyceroporin membrane protein at atomic detail. Using the AGR reporter system we have identified a region within loop C of AQP6 that is responsible for severely hampering its plasma membrane localization. Serine substitution corroborated that amino acids present within AQP6194-213 of AQP6 loop C contribute to intracellular retention. This intracellular retention signal may preclude proper plasma membrane trafficking and severely curtail expression of AQP6 in heterologous cells.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. C. Soler ◽  
T. Kowatz ◽  
A. E. Sloan ◽  
T. S. McCormick ◽  
K. D. Cooper ◽  
...  

AbstractThe inability to over-express Aquaporin 6 (AQP6) in the plasma membrane of heterologous cells has hampered efforts to further characterize the function of this aquaglyceroporin membrane protein at atomic detail using crystallographic approaches. Using an Aquaporin 3-tGFP Reporter (AGR) system we have identified a region within loop C of AQP6 that is responsible for severely hampering plasma membrane expression. Serine substitution corroborated that amino acids present within AQP6194–213 of AQP6 loop C contribute to intracellular endoplasmic reticulum (ER) retention. This intracellular retention signal may preclude proper plasma membrane trafficking and severely curtail expression of AQP6 in heterologous expression systems.


2000 ◽  
Vol 113 (11) ◽  
pp. 1891-1902 ◽  
Author(s):  
P.L. McNeil ◽  
S.S. Vogel ◽  
K. Miyake ◽  
M. Terasaki

Vesicle-vesicle fusion initiated in cell cytoplasm by high Ca(2+) can rapidly erect large membrane boundaries. These might be used as a ‘patch’ for resealing plasma membrane disruptions. Three central predictions of this ‘patch’ hypothesis are here established in sea urchin eggs. First, we show that surface markers for plasma membrane protein and lipid are initially absent over disruption sites after resealing is complete. Second, we demonstrate that resealing capacity is strongly dependent upon local availability of fusion competent cytoplasmic organelles, specifically the reserve or yolk granule. Lastly, we demonstrate that the reserve granule is capable of rapid (t(1/2) <1 second), Ca(2+)-regulated (high threshold) fusion capable of erecting large (>1000 μm(2)), continuous membrane boundaries. Production of patch vesicles for resealing may proceed by an ‘emergency’ fusion mechanism distinct from that utilized for the much slower, highly regulated, cytosol-requiring organelle-organelle fusion events typical of constitutive membrane trafficking pathways.


1999 ◽  
Vol 73 (7) ◽  
pp. 5431-5437 ◽  
Author(s):  
Gyu Choi ◽  
Sunyoung Park ◽  
Bongkun Choi ◽  
Suntaek Hong ◽  
Jiyeon Lee ◽  
...  

ABSTRACT Retroviral capsid assembly can occur by either of two distinct morphogenic processes: in type C viruses, the capsid assembles and buds at the plasma membrane, while in type B and D viruses, the capsid assembles within the cytoplasm and is then transported to the plasma membrane for budding. We have previously reported that a single-amino-acid substitution of a tryptophan for an arginine in the matrix protein (MA) of Mason-Pfizer monkey virus (MPMV) converts its capsid assembly from that of a type D retrovirus to that of the type C viruses (S. S. Rhee and E. Hunter, Cell 63:77–86, 1990). Here we identify a region of 18 amino acids within the MA of MPMV that is responsible for type D-specific morphogenesis. Insertion of these 18 amino acids into the MA of type C Moloney murine leukemia virus causes it to assemble an immature capsid in the cytoplasm. Furthermore, fusion of the MPMV MA to the green fluorescent protein resulted in altered intracellular targeting and a punctate accumulation of the fusion protein in the cytoplasm. These 18 amino acids, which are necessary and sufficient to target retroviral Gag polyproteins to defined sites in the cytoplasm, appear to define a novel mammalian cytoplasmic targeting/retention signal.


2006 ◽  
Vol 17 (7) ◽  
pp. 3031-3050 ◽  
Author(s):  
Marta Rubio-Texeira ◽  
Chris A. Kaiser

Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.


1997 ◽  
Vol 326 (2) ◽  
pp. 497-505 ◽  
Author(s):  
Kristin DENZER ◽  
Birgit WEBER ◽  
Annette HILLE-REHFELD ◽  
Kurt VON FIGURA ◽  
Regina POHLMANN

The cytoplasmic tail of the human 46 kDa mannose 6-phosphate receptor (MPR 46) is necessary for rapid internalization of the receptor and sufficient to mediate internalization of a resident plasma membrane protein. To localize the internalization sequences within the 67 amino acids of the cytoplasmic tail, the tail was progressively shortened from its C-terminus, internal deletions of between four and eight amino acids were introduced into the tail, and individual residues were substituted by alanine, glycine or serine. Three sequences were identified that contribute to the internalization of MPR 46. The first is located within the 23 juxtamembrane cytoplasmic residues of the tail. It contains four essential residues within a heptapeptide and does not resemble known internalization signals. The second sequence contains as a critical residue Tyr-45. The third region is located within the C-terminal seven residues and contains a di-leucine pair as essential residues. The first and third sequences were shown to function as autonomous internalization sequences. Substitution of critically important residues within a single internalization sequence was tolerated, with no or only a moderate decrease in the internalization rate. When essential residues from two or all three internalization sequences were substituted, however, the internalization rate was decreased by more than 60% and 90% respectively. This indicates that the autonomous internalization signals in the cytoplasmic tail of MPR 46 function in an additive manner, but are partly redundant.


2001 ◽  
Vol 359 (2) ◽  
pp. 393-402 ◽  
Author(s):  
Tatjana ALBREKTSEN ◽  
Henrijette E. RICHTER ◽  
Jes T. CLAUSEN ◽  
Jan FLECKNER

Adipocyte differentiation is co-ordinately regulated by several transcription factors and is accompanied by changes in the expression of a variety of genes. Using mRNA differential display analysis, we have isolated a novel mRNA, DD16, specifically induced during the course of adipocyte differentiation. DD16 mRNAs are present in several tissues, but among the tissues tested, a remarkably higher level of expression was found in white adipose tissue. The DD16 cDNA encoded a polypeptide of 415 amino acids containing a single N-glycosylation site and an N-terminal hydrophobic stretch of 19 amino acids forming a transmembrane segment, indicating that DD16 is a glycosylated membrane-bound protein. Polyclonal antibodies raised against the DD16 peptide detected immunoreactive DD16 in membrane fractions, notably the plasma membrane. Association of DD16 with the plasma membrane was further confirmed by biotinylation studies of cell surface proteins, suggesting that DD16 is an integral plasma membrane protein. Therefore we propose to give DD16 the name APMAP (Adipocyte Plasma Membrane-Associated Protein). Although the biological function of this polypeptide is presently unknown, our data suggest that APMAP may function as a novel protein involved in the cross-talk of mature adipocytes with the environment.


2013 ◽  
Vol 24 (17) ◽  
pp. 2703-2713 ◽  
Author(s):  
Philip D. Fox ◽  
Christopher J. Haberkorn ◽  
Aubrey V. Weigel ◽  
Jenny L. Higgins ◽  
Elizabeth J. Akin ◽  
...  

In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.


Sign in / Sign up

Export Citation Format

Share Document