circulatory motion
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Dr Chanda V Reddy

Abstract: The IoT-based Ambu bag mechanical ventilator is a ventilator that automates the process of hand press mechanism using the rack and pinion mechanism. The circulatory motion of the rack is converted into linear motion which helps to press the Ambu bag. The proposed project works on three modes of operation that is child-adult and elder which is set wrt to the breaths per minute. There are two states of operation one normal state where the normal working is evidenced whereas the other operation mode is emergency where the buzzer is themed on in case of emergency. All the parameters are displayed on LCD and connected to the IoT cloud to communicate remotely in the end device Keywords: Ambulatory Bag, IoT network, Rack and Pinion mechanism, Manual resuscitator, mechanical ventilators


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2915
Author(s):  
Işık Sena Akgün ◽  
Can Erkey

The effects of design and operating parameters on the superficial velocity at the onset of circulatory motion and the residence time of alginate aerogel particles in a laboratory scale Wurster fluidized bed were investigated. Several sets of experiments were conducted by varying Wurster tube diameter, Wurster tube length, batch volume and partition gap height. The superficial velocities for Wurster tube with 10 cm diameter were lower than the tube with 8 cm diameter. Superficial velocities increased with increasing batch volume and partition gap height. Moreover, increasing batch volume and partition gap height led to a decrease in the particle residence time in the Wurster tube. The results showed that there is an upper limit for each parameter in order to obtain a circulatory motion of the particles. It was found that the partition gap height should be 2 cm for proper particle circulation. Maximum batch volume for the tube with 10 cm diameter was found as 500 mL whereas maximum batch volume was 250 mL for the tube with 8 cm diameter. The fluidization behavior of the aerogel particles investigated in this study could be described by the general fluidization diagrams in the literature.


2018 ◽  
Vol 63 (12) ◽  
pp. 1076 ◽  
Author(s):  
M. P. Malomuzh

The nature of the self-diffusion in low-molecular fluids is discussed. The particular attention is paid to atomic fluids (such as argon), liquid metals, and associated fluids (such as water). The self-diffusion coefficient in the fluids of all indicated types is considered to be the sum of two components: one of them is associated with the transfer of molecules by hydrodynamic vortex modes, and the other is generated by the circulatory motion of local molecular groups. The both components have a collective nature, they are genetically related to each other and differ only by their scales: the former is mesoscopic, the latter is nanoscopic. Manifestations of the collective vortical transport of molecules as specific features in the time dependence of the root-mean-square displacement of molecules are discussed. Sound arguments are proposed concerning the inadequacy of the activation mechanism of thermal molecular motion in low-molecular liquids. The immanent contradiction of exponential temperature dependences for the viscosity and self-diffusion coefficients is proved. In all cases, the preference is given to qualitative arguments.


2011 ◽  
Vol 83 (4) ◽  
pp. 1443-1464 ◽  
Author(s):  
Luiz Bevilacqua ◽  
Augusto C.N.R. Galeão ◽  
Flavio P. Costa

The ultimate purpose of this paper is to present a new analytical formulation to simulate diffusion with retention in a reactive medium under stable thermodynamic conditions. The analysis of diffusion with retention in a continuum medium is developed after the solution of an equivalent problem using a discrete approach. The new law may be interpreted as the reduction of all diffusion processes with retention to a unifying phenomenon that can adequately simulate the retention effect namely a circulatory motion. It is remarkable that the governing equation requires a fourth order differential term as suggested by the discrete approach. The relative fraction of diffusion particles β is introduced as a control parameter in the diffusion-retention law as suggested by the discrete approach. This control parameter is essential to avoid retention isolated from the diffusion process. Two matrices referring to material properties are introduced and related to the real phenomenon through the circulation hypothesis. The governing equation may be highly non-linear even if the material properties are constant, but the retention effect is a function of the concentration level, that is, β is a function of the concentration.


Author(s):  
A. G. Agwu Nnanna ◽  
Tom Fistrovich ◽  
Kurt Malinski ◽  
S. U. S. Choi

This paper presents an experimental investigation of the thermal transport phenomena in buoyancy-driven nanofluids. The experimental model for this study is a rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls. The nanofluids were confined within the enclosure. Simulations were performed to measure the transient and steady-state temperature response of the nanofluids to applied load. Experimental observation shows settling of the nanoparticle at low heat loads and a remixing of the nanofluid at higher loads. At high loads, the buoyancy force increased hence increasing the re-circulatory motion of the nanofluid. This may be one method of addressing the settling of nanoparticles in nanofluid. For natural convection in an enclosure, this paper shows that the thermal behavior of nanofluids is identical to pure fluids. Temperature data collected during the experiment were used to study the variation of Nusselt number with Rayleigh number.


1998 ◽  
Vol 374 ◽  
pp. 173-194 ◽  
Author(s):  
B. YAN ◽  
N. RILEY

Viscous flow about a circular cylinder that is submerged beneath free-surface travelling waves is considered. The wave amplitude is assumed small and results are presented for a wide range of Reynolds number. Particular attention is focused on the second-order time-averaged flow that manifests itself as a circulatory motion about the cylinder. The paper complements earlier work on this problem by Yan & Riley (1996) in the large Reynolds number, boundary-layer, regime and Riley & Yan (1996) in the inviscid flow limit, and makes a comparison with experimental work by Chaplin (1984) possible.


Sign in / Sign up

Export Citation Format

Share Document