maximum quantum efficiency
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
M. Renger ◽  
S. Pogorzalek ◽  
Q. Chen ◽  
Y. Nojiri ◽  
K. Inomata ◽  
...  

AbstractThe low-noise amplification of weak microwave signals is crucial for countless protocols in quantum information processing. Quantum mechanics sets an ultimate lower limit of half a photon to the added input noise for phase-preserving amplification of narrowband signals, also known as the standard quantum limit (SQL). This limit, which is equivalent to a maximum quantum efficiency of 0.5, can be overcome by employing nondegenerate parametric amplification of broadband signals. We show that, in principle, a maximum quantum efficiency of unity can be reached. Experimentally, we find a quantum efficiency of 0.69 ± 0.02, well beyond the SQL, by employing a flux-driven Josephson parametric amplifier and broadband thermal signals. We expect that our results allow for fundamental improvements in the detection of ultraweak microwave signals.


2020 ◽  
Vol 44 (21) ◽  
pp. 8743-8750
Author(s):  
Haiyang Ma ◽  
Di Liu ◽  
Jiuyan Li ◽  
Yongqiang Mei ◽  
Deli Li ◽  
...  

Three sky blue heteroleptic Ir(III) complexes with emission peaks at 457–459 nm, have been developed. A maximum quantum efficiency of 21.23% with CIE coordinates of (0.15, 0.26) is realized in their PhOLEDs, representing a higher efficiencies and improved color purities than FIrpic.


Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 43 ◽  
Author(s):  
Mathias Chia ◽  
Benjamin Kramer ◽  
Jennifer Jankowiak ◽  
Maria Bittencourt-Oliveira ◽  
Christopher Gobler

Globally, eutrophication and warming of aquatic ecosystems has increased the frequency and intensity of cyanobacterial blooms and their associated toxins, with the simultaneous detection of multiple cyanotoxins often occurring. Despite the co-occurrence of cyanotoxins such as microcystins and anatoxin-a (ATX) in water bodies, their effects on phytoplankton communities are poorly understood. The individual and combined effects of microcystin-LR (MC-LR) and ATX on the cyanobacteria Microcystis spp., and Anabaena variabilis (a.k.a. Trichormus variabilis), and the chlorophyte, Selenastrum capricornutum were investigated in the present study. Cell density, chlorophyll-a content, and the maximum quantum efficiency of photosystem II (Fv/Fm) of Microcystis cells were generally lowered after exposure to ATX or MC-LR, while the combined treatment with MC-LR and ATX synergistically reduced the chlorophyll-a concentration of Microcystis strain LE-3. Intracellular levels of microcystin in Microcystis LE-3 significantly increased following exposure to MC-LR + ATX. The maximum quantum efficiency of photosystem II of Anabaena strain UTEX B377 declined during exposure to the cyanotoxins. Nitrogen fixation by Anabaena UTEX B377 was significantly inhibited by exposure to ATX, but was unaffected by MC-LR. In contrast, the combination of both cyanotoxins (MC-LR + ATX) caused a synergistic increase in the growth of S. capricornutum. While the toxins caused an increase in the activity of enzymes that scavenge reactive oxygen species in cyanobacteria, enzyme activity was unchanged or decreased in S. capricornutum. Collectively this study demonstrates that MC-LR and ATX can selectively promote and inhibit the growth and performance of green algae and cyanobacteria, respectively, and that the combined effect of these cyanotoxins was often more intense than their individual effects on some strains. This suggests that the release of multiple cyanotoxins in aquatic ecosystems, following the collapse of blooms, may influence the succession of plankton communities.


2019 ◽  
Vol 37 ◽  
Author(s):  
M. KARGAR ◽  
R. GHORBANI ◽  
M.H. RASHED MOHASSEL ◽  
M. RASTGOO

ABSTRACT: Chlorophyll fluorescence measurement is a precise research technique that can be used for studying the effect of herbicides with different modes of action on photosynthetic apparatus. The aim of the present project was to study the variation of the fluorescence induction curve (Kautsky curve) and its variables affected by pinoxaden (ACCase inhibitor) and mesosulfuron-methyl + iodosulfuron herbicide (ALS inhibitor) in littleseed canarygrass (Phalaris minor Retz.) and wild oat (Avena ludoviciana Durieu). This study was carried out at the Greenhouse of Collage of Agriculture at Ferdowsi University of Mashhad, during 2013. Experiments were performed based on a completely randomized design in form of a dose-response test with six doses of each herbicide plus an untreated control. The maximum quantum efficiency of photosystem II (PSII) was measured 1, 2, 3, 5 and 7 days after spraying (DAS). The results obtained in the study indicated that the estimated EDs parameters differed based on herbicide types or weed species. For example, ED90 varied from 11.67 to 28.61 g active ingredient (a.i.) ha-1. Moreover, the results showed that application of mesosulfuron-methyl + iodosulfuron at doses higher than 9 g a.i. ha-1 changed the shape of the chlorophyll fluorescence induction curve (Kautsky curve) in littleseed canarygrass at 7 DAS while herbicide doses of mesosulfuron-methyl + iodosulfuron did not change the shape of the Kautsky curve in wild oat. In addition, the Kautsky curve was observed to have an approximate permanent drop for littleseed canarygrass species at 2 DAS by pinoxaden. Comparing the fluorescence parameters in wild oat and littleseed canarygrass treated with two herbicides showed that Fv/Fm, the maximum quantum efficiency of PSII and Fvj, variable fluorescence at the J step of littleseed canarygrass decreased more than the mentioned parameters in wild oat. Furthermore, there was a strong relationship ranging from 0.53 to 0.79 between dry weights after 4 weeks and fluorescence parameters at 7 DAS depending on the herbicide type and weed species. Applying fluorescence parameters a few days after treatment to predict biomass production can be a defining criterion in research and development stages of herbicides to eliminate the need for whole plant bioassay. This method can also be applied to shorten the bioassay screening period and function as a suitable and cost effective indicator for monitoring of ACCase and ALS inhibitors. This approach also demonstrates serious damages to plant photosynthesis apparatus on crop during herbicide misapplication.


2018 ◽  
Vol 10 (4) ◽  
pp. 508-515 ◽  
Author(s):  
Ghasem PARMOON ◽  
Ali EBADI ◽  
Soodabe JAHANBAKHSH ◽  
Masoud HASHEMI ◽  
Seyed Amir MOOSAVI

In order to investigate the effects of some plant growth regulators on photosynthetic pigments and growth of fennel plants, a greenhouse experiment was conducted based on the randomized complete block design with three replicates in 2017. Treatments were the application of methyl jasmonate (25, 50, 100 and 200 μM), putrescine (0.25, 0.5, 1 and 2 mM) and 24-Epibrassinolide at 0.001, 0.01, 0.1 and 1 μM and distilled water as a control. The results indicated that application of 0.5 Mm putrescine, exhibited significant effects on the chlorophyll a (62%), b (104%), total chlorophyll (72%), carotenoids (51%), flavonoids (51%), anthocyanin content (-14%), phenolic compounds (13%) and maximum quantum efficiency (17%) in dark condition and in light condition. Application of 24-Epibrassinolide resulted in a significant increase of chlorophyll a and total chlorophyll, carotenoids, phenol content, maximum quantum efficiency in the dark condition and photochemical quenching of fluorescence. The highest chlorophyll content and carotenoids were observed in treated plants with 0.1 µM 24-Epibrassinolide, while the maximum phenol content was obtained by application of 0.01 µM 24-Epibrassinolide. The application of methyl jasmonate significantly affected the major chlorophyll and accessory pigments (except phenol) of fennel. Plants treated with 50 µM methyl jasmonate exhibited higher concentrations of chlorophyll a (3.25 mg per g FW-1), total chlorophyll (4.35 mg per g FW-1), carotenoids (0.87 mg per g FW-1) and flavonoids (4.75 µg per g FW-1). A significant dry weight increased after the application of methyl jasmonate and it can be concluded that the most effective treatment in this regard for fennel plants was 50 µM methyl jasmonate.


2018 ◽  
Vol 64 (No. 8) ◽  
pp. 386-392 ◽  
Author(s):  
Linn Alexander Ingo ◽  
Košnarová Pavlína ◽  
Soukup Josef ◽  
Gerhards Roland

Reliable tests on herbicide resistance are important for resistance management. Despite well-established greenhouse bioassays, faster and in-season screening methods would aid in more efficient resistance detection. The feasibility of a chlorophyll fluorescence agar-based test on herbicide resistance in Apera spica-venti L. was investigated. Herbicide resistant and sensitive A. spica-venti seedlings were transplanted into agar containing pinoxaden and pyroxsulam herbicides. Chlorophyll fluorescence was measured and the maximum quantum efficiency of photosystem II (F<sub>v</sub>/F<sub>m</sub>) was determined 48 h and 72 h after the transplantation to agar, respectively. The F<sub>v</sub>/F<sub>m</sub> values decreased with increasing herbicide concentration. Dose-response curves and respective ED<sub>50</sub> values (herbicide concentration leading to 50% decrease of the F<sub>v</sub>/F<sub>m</sub> value) were calculated. However, each experiment repetition exhibited different sensitivities of the populations for both herbicides. In certain cases, resistant populations demonstrated similar F<sub>v</sub>/F<sub>m</sub> values as sensitive populations. Contrary to the findings in Alopecurus myosuroides Huds., discrimination of sensitive and resistant A. spica-venti populations was not feasible. An increased importance of the assessment time due to the herbicide concentrations calibrated for fast responses was assumed in this study.


2018 ◽  
Vol 26 (1) ◽  
pp. 37-44
Author(s):  
Krzysztof Górnik ◽  
Mieczysław Grzesik ◽  
Regina Janas ◽  
Edward Żurawicz ◽  
Ewa Chojnowska ◽  
...  

Abstract The aim of the study was to shorten the period of breaking dormancy in apple seeds and to improve the growth of the seedlings of ‘Gold Milenium’, ‘Ligol’ and ‘Szampion’. The whole seeds were removed from fruits directly after the harvest and were subjected to stratification (3 °C for 90 days in darkness) in distilled water or an aqueous solutions of 500 mM salicylic acid (SA), 10−3 M jasmonic acid (JA), gibberellin A3 (GA3) and 6-benzylaminopurine (BAP) at 250 mg·dm−3 and 100 mg·dm−3, respectively. Growth regulators were applied separately or in a mixture containing SA, JA, GA3 and BAP. The germinability and seed germination rate, seedlings growth, chlorophyll content index and the maximum quantum efficiency of Photosystem II (Fv/Fm) were investigated. The obtained results revealed that stratification in water positively affected the dormancy removal in ‘Gold Milenium’, ‘Ligol’ and ‘Szampion’ seeds. Application of SA, GA3, BAP, JA during seed stratification additionally stimulated the seeds’ germination rate as well as the growth of seedlings, index of chlorophyll content and maximum PSII efficiency (Fv/Fm). The most pronounced results were obtained after the seed stratification in GA3 alone or in a mixture containing SA, GA3, BAP and JA. Due to such a treatment, the germination of ‘Ligol’ seeds increased by 40% and they germinated faster in comparison to the control seeds. Such treatments also promoted the growth of seedlings, chlorophyll content and maximum quantum efficiency of Photosystem II (Fv/Fm). The present study indicates that the application of GA3 or the mixture of SA, GA3, BAP and JA during the stratification of seeds is an effective method to increase and accelerate the germination of seeds and juvenile seedlings’ growth in order to shorten the apple breeding cycle. Further studies are needed to optimize the appropriate concentration of growth regulators applied simultaneously during seeds stratification.


Nanoscale ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 3014-3019 ◽  
Author(s):  
Soyeon An ◽  
Hyelim Cho ◽  
Heung Bae Jeon ◽  
Sang-Wook Kim

New anionic precursor, tris(hexylthio)phosphine(THTP), is introduced for use with InP-based QDs, as a result, the emission wavelength from 530 nm to 570 nm and a maximum quantum efficiency of 42% are obtained.


2017 ◽  
Vol 58 (8) ◽  
pp. 1339-1349 ◽  
Author(s):  
Aaron I. Velez-Ramirez ◽  
Natalia Carre�o-Quintero ◽  
Dick Vreugdenhil ◽  
Frank F. Millenaar ◽  
Wim van Ieperen

Sign in / Sign up

Export Citation Format

Share Document