Cobalt‐catalyzed Intermolecular Hydroamination of Unactivated Alkenes Using NFSI as Nitrogen Source

Author(s):  
Peng‐Wei Sun ◽  
Ze Zhang ◽  
Xinyao Wang ◽  
Linshan Li ◽  
Yuxin Li ◽  
...  
Keyword(s):  
1976 ◽  
Vol 42 (4) ◽  
pp. 993-1001 ◽  
Author(s):  
R. P. Kromann ◽  
T. R. Wilson ◽  
G. S. Cantwell

1958 ◽  
Vol 50 (3) ◽  
pp. 172-173 ◽  
Author(s):  
Glenn W. Burton ◽  
James E. Jackson ◽  
B. L. Southwell

jpa ◽  
1992 ◽  
Vol 5 (4) ◽  
pp. 607-610 ◽  
Author(s):  
K. L. Wells ◽  
W. O. Thom ◽  
H. B. Rice

Crop Science ◽  
1991 ◽  
Vol 31 (6) ◽  
pp. 1674-1680 ◽  
Author(s):  
P. H. Dernoeden ◽  
J. N. Crahay ◽  
D. B. Davis

Synthesis ◽  
2021 ◽  
Author(s):  
Xinjun Luan ◽  
Jingxun Yu

AbstractTransition-metal-catalyzed C–N bond formation is one of the most important pathways to synthesize N-heterocycles. Hydroxylamines can be transformed into a nucleophilic reagent to react with a carbon cation or coordinate with a transition metal; it can also become an electrophilic nitrogen source to react with arenes, alkenes, and alkynes. In this short review, the progress made on transition-metal-catalyzed cycloadditions with hydroxylamines as a nitrogen source is summarized.1 Introduction2 Cycloaddition To Form Aziridine Derivatives2.1 Intramolecular Cycloaddition To Form Aziridine Derivatives2.2 Intermolecular Cycloaddition To Form Aziridine Derivatives3 Cycloaddition To Form Indole Derivatives4 Cycloaddition To Form Other N-Heterocycles4.1 Aza-Heck-Type Amination Reactions4.2 Nitrene Insertion Amination Reactions4.3 Intramolecular Nucleophilic and Electrophilic Amination Reactions5 Conclusion and Outlook


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rianne C. Prins ◽  
Sonja Billerbeck

Abstract Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects.


2012 ◽  
Vol 160 (3-4) ◽  
pp. 229-235 ◽  
Author(s):  
Yu Shen ◽  
Jin-Song Guo ◽  
You-Peng Chen ◽  
Hai-Dong Zhang ◽  
Xu-Xu Zheng ◽  
...  

2021 ◽  
Author(s):  
Jin-Tian Ma ◽  
Li-Sheng Wang ◽  
Zhi Chai ◽  
Xin-Feng Chen ◽  
Bo-Cheng Tang ◽  
...  

Quinazoline skeletons are synthesized by amino acids catabolism/reconstruction combined with dimethyl sulfoxide insertion/cyclization for the first time. The amino acid acts as a carbon and nitrogen source through HI-mediated catabolism...


1953 ◽  
Vol 31 (1) ◽  
pp. 28-32 ◽  
Author(s):  
A. C. Blackwood

One hundred and fourteen bacterial cultures representing most of the species in the Bacillus genus were tested for the production of extracellular barley gum cytase. Assays were made on shake-flask cultures grown on a medium containing glucose and yeast extract. Although all the organisms had some enzymatic activity, certain strains of Bacillus subtilis gave the best yields of cytase. On a medium with asparagine as the sole nitrogen source even higher yields were obtained. The crude cytase preparations were stable and after freeze-drying most of the original activity remained.


Sign in / Sign up

Export Citation Format

Share Document