scholarly journals Optimal analysis of TSM fitting considering contact interface TECs of meshing gears

2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110377
Author(s):  
Xigui Wang ◽  
Jie Tang ◽  
Yongmei Wang ◽  
Jiafu Ruan ◽  
Siyuan An

The pre-research project aims to propose a method of optimizing tooth surface modification (TSM) fitting under thermoelastic lubrication (TEL) conditions to reveal the most popular and concerned mechanism issues in the field of mechanical engineering. This is an exploratory study, mainly considering the gear comprehensive error and TSM state of TEL contact interfaces are extremely harsh, which complicates simulation analysis and optimal design. TSM simulation has fitted numerically agreement with optimized results obtained experimentally, which means that they can, whether isolated or by using a multiscale coupling method, start to be adopted to revise, and verify meta-models for thermoelastic characteristics (TECs) under TEL problems. This subject involves the TSM fitting of the theoretical teeth surface superimposed structure, and performs 3D and diagonal modification optimization design, obtains the modified surface position and normal vectors, according to load teeth contact analysis (LTCA), a variety of optimized modification models are established and complex curved surfaces are analyzed to fit the actual gear teeth surface thermoelastic contact numerical simulation, which has been further demonstrated and expressed in the type experiment combined with actual key working conditions and multiple influencing parameters, which is of great significance to the development of modern gear transmission system.

2021 ◽  
Vol 160 ◽  
pp. 104299
Author(s):  
Bing Yuan ◽  
Geng Liu ◽  
Yanjiong Yue ◽  
Lan Liu ◽  
Yunbo Shen

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jianneng Chen ◽  
Xincheng Sun ◽  
Chuanyu Wu ◽  
Dadu Xiao ◽  
Jun Ye

AbstractThe noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields. Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China, whereas two pulley noncircular synchronous belt transmissions have been developed overseas. However, owing to the noncircular characteristics of the belt pulley, the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant, resulting in high probabilities of skipping and vibration. In this study, a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning, with no skipping; hence, the non-uniform output characteristic of the driven pulley is consistent with the theoretical value. In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism, the pitch curve of the driving synchronous belt pulley is circular, whereas those of the driven synchronous belt and tensioning pulleys are noncircular. To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley, an automatic optimization model of the tensioning pulley pitch curve is established. The motion simulation, analysis, and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written, and the variation in belt length slack under different speed ratios is analyzed based on several examples. The testbed for a circular–noncircular–noncircular three-pulley noncircular synchronous belt transmission mechanism is developed. The test shows that the three-pulley noncircular synchronous belt drives well. This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism; it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.


2013 ◽  
Vol 631-632 ◽  
pp. 518-523 ◽  
Author(s):  
Xiang Li ◽  
Min You

Owing to the lack of a good theory method to obtain the accurate equivalent elastic constants of hexagon honeycomb sandwich structure’s core, the paper analyzed mechanics performance of honeycomb sandwich structure’s core and deduced equivalent elastic constants of hexagon honeycomb sandwich structure’s core considering the wall plate expansion deformation’s effect of hexagonal cell. And also a typical satellite sandwich structure was chose as an application to analyze. The commercial finite element program ANSYS was employed to evaluate the mechanics property of hexagon honeycomb core. Numerical simulation analysis and theoretical calculation results show the formulas of equivalent elastic constants is correct and also research results of the paper provide theory basis for satellite cellular sandwich structure optimization design.


Author(s):  
Vikram Sridhar ◽  
Kam Chana

Health monitoring of mechanical transmission systems is an important area of research. Mechanical transmission systems, especially gear boxes in aircraft, automobiles, and wind turbines etc. account for many of the maintenance costs due to repairs, replacements and downtime. Gear boxes can experience high level of failure due to varied load conditions and harsh environments. Replacing the gear box is quite an expensive process and has significant downtime. Current gear box monitoring involves mainly measuring vibrations, however vibrations occur when the fault in the gear has already progressed significantly. Gear teeth monitoring lacks sensor technology to successfully detect tooth damage and misalignment. This paper presents a new concept gear teeth damage detection using eddy current sensors fitted on to the teeth of an idler gear at various locations. These sensors detect various faults encountered in a gear such as micro and macro pitting of the tooth surface, contact wear etc. Eddy current sensors are already being used to detect turbomachinery blade vibrations and tip clearance as they are robust and immune to contamination. In the present case, we use an idler gear that incorporates miniature eddy current sensors and state of the art electronics with wireless data transmission to enable the device to operate remotely and in harsh environments. A rotating rig with gears (spur and helical) and oil supply was built to test and validate the sensor by seeding various faults on the tooth surface. The results show that the idler sensor gear was able to detect various faults. The new eddy current sensor idler gear concept will enable health monitoring of the gearbox and ensure timely maintenance and reduction in operation costs.


2012 ◽  
Vol 538-541 ◽  
pp. 2759-2766
Author(s):  
Cai An Fu ◽  
Meng Tong ◽  
Xian Wang

Abstract.Now the largeness of circumferential belt and 2 poles in ball billet after cold upsetting process and the consequently low material utilization ratio increase the following process time and cause a great waste. In order to obtain low allowance of ball billet, high material utilization ratio and productivity, through the research of the cold upsetting process, evaluating indicator including plumpness, roundness, cold upsetting force and volume was established, orthogonal test was designed. By the Deform simulation analysis the optimum process parameters was obtained. The results show that the optimized cold upsetting force is reduced by 35%. So the optimized process parameters has a great application value.


Author(s):  
Xian-Long Peng

The conventional tooth surface of a face gear is difficult to manufacture, and the cutter for the face gear cutting is not uniform even though the parameters of the pinion mating with the face gear slightly change. Based on the analysis of the geometry features of the tooth surface, a new developable ruled surface is defined as the tooth flank of the face gear, for which the most important geometry feature is that the flank could be represented by a family of straight lines, hence it could be generated by a straight-edged cutter. The mathematical models of the new ruled tooth surface, the cutter and the generation method are presented, the deviation between the ruled surface and the conventional surface, the correction of the ruled surface to reduce the deviation are investigated through numerical examples. The manufacturing process is simulated by VERICUT software, and the results demonstrate that even when the principle deviation is added to the machined deviation, the absolute deviation is on the micro-scale. The meshing and contact simulation shows that the new surface could obtain good meshing performance when the number of face gear teeth is greater than three times the number of pinion teeth. This research provides a new method for manufacturing face gears.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 609
Author(s):  
Lingli Cui ◽  
Tongtong Liu ◽  
Jinfeng Huang ◽  
Huaqing Wang

This paper investigates the effect of a gear tooth peeling on meshing stiffness of involute gears. The tooth of the gear wheel is symmetric about the axis, and its symmetry will change after the gear spalling, and its meshing stiffness will also change during the meshing process. On this basis, an analytical model was developed, and based on the energy method a meshing stiffness algorithm for the complete meshing process of single gear teeth with peeling gears was proposed. According to the influence of the change of meshing point relative to the peeling position on the meshing stiffness, this algorithm calculates its stiffness separately. The influence of the peeling sizes on mesh stiffness is studied by simulation analysis. As a very important parameter, the study of gear mesh stiffness is of great significance to the monitoring of working conditions and the prevention of sudden failure of the gear box system.


2012 ◽  
Vol 479-481 ◽  
pp. 944-948 ◽  
Author(s):  
Dian Hua Chen ◽  
Zhong Wei Zhang

A practical method based on normal gaps topography is proposed here for loaded tooth contact analysis of WN gear having tooth surface deviations. The simulation of meshing state and tooth strength of WN gear are provided with real tooth surfaces. In the study normal gaps distribution is adopted to calculate tooth surface contact elastic deformation and local deviations due to manufacturing errors and tooth surface wear. For WN gear, the loaded distribution on the contact zone in meshing tooth surface has not been investigated because of their complexity in the contact state. The finite element method is adopted to analyze the contact pattern and tooth strength. The study has concretely calculated the contact pressure and zone of meshing in different loaded and transmission error. At the end examples are analyzed to demonstrate the effectiveness of the proposed method in quantifying effect of such deviations on the loaded distribution and tooth stress distribution.


Sign in / Sign up

Export Citation Format

Share Document