scholarly journals Sound Insulation of Corrugated-Core Sandwich Panels: Modeling, Optimization and Experiment

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7785
Author(s):  
Longlong Ren ◽  
Haosen Yang ◽  
Lei Liu ◽  
Chuanlong Zhai ◽  
Yuepeng Song

With the extension of the applications of sandwich panels with corrugated core, sound insulation performance has been a great concern for acoustic comfort design in many industrial fields. This paper presents a numerical and experimental study on the vibro-acoustic optimization of a finite size sandwich panel with corrugated core for maximizing the sound transmission loss. The numerical model is established by using the wave-based method, which shows a great improvement in the computational efficiency comparing to the finite element method. Constrained by the fundamental frequency and total mass, the optimization is performed by using a genetic algorithm in three different frequency bands. According to the optimization results, the frequency averaged sound transmission of the optimized models in the low, middle, and high-frequency ranges has increased, respectively, by 7.6 dB, 7.9 dB, and 11.7 dB compared to the baseline model. Benefiting from the vast number of the evolution samples, the correlation between the structural design parameters and the sound transmission characteristics is analyzed by introducing the coefficient of determination, which gives the variation of the importance of each design parameter in different frequency ranges. Finally, for validation purposes, a sound insulation test is conducted to validate the optimization results in the high-frequency range, which proves the feasibility of the optimization method in the practical engineering design of the sandwich panel.

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Zhongchang Qian ◽  
Daoqing Chang ◽  
Bilong Liu ◽  
Ke Liu

An approach on the prediction of sound transmission loss for a finite sandwich panel with honeycomb core is described in the paper. The sandwich panel is treated as orthotropic and the apparent bending stiffness in two principal directions is estimated by means of simple tests on beam elements cut from the sandwich panel. Utilizing orthotropic panel theory, together with the obtained bending stiffness in two directions, the sound transmission loss of simply-supported sandwich panel is predicted by the modal expansion method. Simulation results indicated that dimension, orthotropy, and loss factor may play important roles on sound transmission loss of sandwich panel. The predicted transmission loss is compared with measured data and the agreement is reasonable. This approach may provide an efficient tool to predict the sound transmission loss of finite sandwich panels.


2015 ◽  
Vol 07 (01) ◽  
pp. 1550013 ◽  
Author(s):  
C. Shen ◽  
Q. C. Zhang ◽  
S. Q. Chen ◽  
H. Y. Xia ◽  
F. Jin

In this paper, an analytical model is developed to investigate sound transmission loss characteristic of adhesively bonded metal sandwich panels with pyramidal lattice truss cores based on 3D elasticity theory. Meanwhile, practical specimen is fabricated to conduct corresponding sound insulation experiment test via a standing wave tube method. The effective elastic constant of truss cores is derived using one homogenization theory on account of equivalent strain energy. It is found that satisfactory agreement is achieved between theoretical solutions and experiment results, and damping effect of adhesive bonding interface between facesheets and core has a great impact on transmission loss. Further parameter investigations demonstrate the significant effect of the elevation and azimuth angles of the pyramidal cores, which can be conveniently changed to tailor the acoustic performance of the sandwich panels in the whole frequency range.


2016 ◽  
Vol 19 (1) ◽  
pp. 26-48 ◽  
Author(s):  
MP Arunkumar ◽  
Jeyaraj Pitchaimani ◽  
KV Gangadharan ◽  
MC Lenin Babu

Sandwich panel which has a design involving acoustic comfort is always denser and larger in size than the design involving mechanical strength. The respective short come can be solved by exploring the impact of core geometry on sound transmission characteristics of sandwich panels. In this aspect, the present work focuses on the study of influence of core geometry on sound transmission characteristics of sandwich panels which are commonly used as aircraft structures. Numerical investigation has been carried out based on a 2D model with equivalent elastic properties. The present study has found that, for a honeycomb core sandwich panel in due consideration to space constraint, better sound transmission characteristics can be achieved with lower core height. It is observed that, for a honeycomb core sandwich panel, one can select cell size as the parameter to reduce the weight with out affecting the sound transmission loss. Triangular core sandwich panel can be used for low frequency application due to its increased transmission loss. In foam core sandwich panel, it is noticed that the effect of face sheet material on sound transmission loss is significant and this can be controlled by varying the density of foam.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Tongan Wang ◽  
Shan Li ◽  
Shankar Rajaram ◽  
Steven R. Nutt

A statistical energy analysis (SEA) approach is used to predict the sound transmission loss (STL) of sandwich panels numerically. Unlike conventional SEA studies of the STL of sandwich panels, which consider only the antisymmetric (bending) motion of the sandwich panel, the present approach accounts for both antisymmetric and symmetric (dilatational) motions. Using the consistent higher-order sandwich plate theory, the wave numbers of the waves propagating in the sandwich panel were calculated. Using these wave numbers, the wave speed of the propagating waves, the modal density, and the radiation efficiency of the sandwich panels were determined. Finally, the sound transmission losses of two sandwich panels were calculated and compared with the experimentally measured values, as well as with conventional SEA predictions. The comparisons with the experimental data showed good agreement, and the superiority of the present approach relative to other approaches is discussed and analyzed.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Li ◽  
Deqing Yang

Auxetic mechanical metamaterials that exhibit a negative Poisson’s ratio (NPR) can be artificially designed to exhibit a unique range of physical and mechanical properties. Novel sandwich structures composed of uniform and gradient auxetic double arrowhead honeycomb (DAH) cores were investigated in terms of their vibration and sound transmission performance stimulated by nonhomogeneous metamaterials with nonperiodic cell geometries. The spectral element method (SEM) was employed to accurately evaluate the natural frequencies and dynamic responses with a limited number of elements at high frequencies. The results indicated that the vibrating mode shapes and deformations of the DAH sandwich models were strongly affected by the patterned gradient metamaterials. In addition, the sound insulation performance of the considered DAH sandwich models was investigated regarding the sound transmission loss (STL) from 1 Hz to 1500 Hz under a normal incident planar wave, and this performance was compared with that for hexagonal honeycomb sandwich panels. A programmable structural-acoustic optimization was implemented to maximize the STL while maintaining a constant weight and high strength. The results showed that the uniform DAH sandwich models with larger NPRs generally exhibited better vibration and acoustic attenuation behaviors and that the optimized gradient increasing NPR models yielded higher STL values than the optimized gradient decreasing NPR models for two specified frequency cases, with improvements of 6.52 dB and 2.52 dB and a higher bending stiffness but a lower overall STL. Thus, sandwich panels consisting of auxetic DAHs can achieve desirable vibroacoustic performance with a higher bending stiffness than conventional hexagonal honeycomb sandwich structures, and the design of gradient DAHs can be extended to obtain optimized vibration and noise-control capabilities.


2020 ◽  
Vol 37 ◽  
pp. 126-133
Author(s):  
Yuan-Wei Li ◽  
Chao-Nan Wang

Abstract The purpose of this study was to investigate the sound insulation of double-leaf panels. In practice, double-leaf panels require a stud between two surface panels. To simplify the analysis, a stud was modeled as a spring and mass. Studies have indicated that the stiffness of the equivalent spring is not a constant and varies with the frequency of sound. Therefore, a frequency-dependent stiffness curve was used to model the effect of the stud to analyze the sound insulation of a double-leaf panel. First, the sound transmission loss of a panel reported by Halliwell was used to fit the results of this study to determine the stiffness of the distribution curve. With this stiffness distribution of steel stud, some previous proposed panels are also analyzed and are compared to the experimental results in the literature. The agreement is good. Finally, the effects of parameters, such as the thickness and density of the panel, thickness of the stud and spacing of the stud, on the sound insulation of double-leaf panels were analyzed.


2018 ◽  
Vol 55 (2) ◽  
pp. 64-76
Author(s):  
D. Belakova ◽  
A. Seile ◽  
S. Kukle ◽  
T. Plamus

Abstract Within the present study, the effect of hemp (40 wt%) and polyactide (60 wt%), non-woven surface density, thickness and number of fibre web layers on the sound absorption coefficient and the sound transmission loss in the frequency range from 50 to 5000 Hz is analysed. The sound insulation properties of the experimental samples have been determined, compared to the ones in practical use, and the possible use of material has been defined. Non-woven materials are ideally suited for use in acoustic insulation products because the arrangement of fibres produces a porous material structure, which leads to a greater interaction between sound waves and fibre structure. Of all the tested samples (A, B and D), the non-woven variant B exceeded the surface density of sample A by 1.22 times and 1.15 times that of sample D. By placing non-wovens one above the other in 2 layers, it is possible to increase the absorption coefficient of the material, which depending on the frequency corresponds to C, D, and E sound absorption classes. Sample A demonstrates the best sound absorption of all the three samples in the frequency range from 250 to 2000 Hz. In the test frequency range from 50 to 5000 Hz, the sound transmission loss varies from 0.76 (Sample D at 63 Hz) to 3.90 (Sample B at 5000 Hz).


2018 ◽  
Vol 3 (1) ◽  
pp. 41
Author(s):  
Wibowo Harso Nugroho ◽  
Nanang J.H. Purnomo ◽  
Hardi Zen ◽  
Andi Rahmadiansah

With the increasingly strict requirements of the ship classification bureau for permissible noise limits to allow passengers and crew to be more comfortable and secure a technical assessment is required to address the characteristics of the noise. A noise beyond the standard allowed in the vessel can be a problem to the ship operators. This noise problem will greatly affects the crews' comfort and passengers. One method to reduce the noise on a ship is to use sound insulation. This paper describes the method for determining the absorption coefficient α and the transmission loss (TL) through an acoustic test of a concrete insulation in the laboratory. The test was conducted by using the method of impedance tube where a speciment response measured by a microphone. In general, the properties of this insulation material remains as the main base material which is concrete. it has been found that the transmission loss value (TL) is in the range of 10 - 50 dB whereas for the base material the concrete is around 22 - 49 dB but the absorption coefficient α of the specimen material is much higher than the material of the base material especially in high frequency, which ranges from 0.15 to 0.97, whereas for concrete base materials have absorbent coefficient α ranges from 0.01 to 0.02.


Sign in / Sign up

Export Citation Format

Share Document