scholarly journals Large uncertainties in trends of energy demand for heating and cooling under climate change

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adrien Deroubaix ◽  
Inga Labuhn ◽  
Marie Camredon ◽  
Benjamin Gaubert ◽  
Paul-Arthur Monerie ◽  
...  

AbstractThe energy demand for heating and cooling buildings is changing with global warming. Using proxies of climate-driven energy demand based on the heating and cooling Degree-Days methodology applied to thirty global climate model simulations, we show that, over all continental areas, the climate-driven energy demand trends for heating and cooling were weak, changing by less than 10% from 1950 to 1990, but become stronger from 1990 to 2030, changing by more than 10%. With the multi-model mean, the increasing trends in cooling energy demand are more pronounced than the decreasing trends in heating. The changes in cooling, however, are highly variable depending on individual simulations, ranging from a few to several hundred percent in most of the densely populated mid-latitude areas. This work presents an example of the challenges that accompany future energy demand quantification as a result of the uncertainty in the projected climate.

2021 ◽  
Author(s):  
Amin Sadeqi ◽  
Hossein Tabari ◽  
Yagob Dinpashoh

Abstract Climate change affects the energy demand in different sectors of the society. To investigate this possible impact, in this research, temporal trends and change points in heating degree-days (HDD), cooling degree-days (CDD), and their simultaneous combination (HDD+CDD) were analysed for a 60-year period (1960-2019) in Iran. The results show that less than 20% of the study stations had significant trends (either upward or downward) in HDD time series, while more than 80% of the stations had significant increasing trends in CDD and HDD+CDD time series. Abrupt changes in HDD time series mostly occurred in the early 1980s, but those in CDD time series were mostly observed in the 1990s. The cooling energy demand in Iran has dramatically increased as CDD values have raised up from 690 ºC-days to 1010 ºC-days in the last 60 years. HDD, however, almost remained constant in the same period. The results suggest that if global warming continues with the current pace, cooling energy demand in the residential sector will considerably increase in the future, calling for a change in residential energy consumption policies.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


2015 ◽  
Vol 28 (20) ◽  
pp. 8093-8108 ◽  
Author(s):  
Cathryn E. Birch ◽  
Malcolm J. Roberts ◽  
Luis Garcia-Carreras ◽  
Duncan Ackerley ◽  
Michael J. Reeder ◽  
...  

Abstract There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.


2017 ◽  
Vol 114 (6) ◽  
pp. 1258-1263 ◽  
Author(s):  
J. David Neelin ◽  
Sandeep Sahany ◽  
Samuel N. Stechmann ◽  
Diana N. Bernstein

Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.


2021 ◽  
Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

<p>This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data”. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,  we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.</p>


2014 ◽  
Vol 119 (13) ◽  
pp. 8169-8188 ◽  
Author(s):  
Paul Glantz ◽  
Adam Bourassa ◽  
Andreas Herber ◽  
Trond Iversen ◽  
Johannes Karlsson ◽  
...  

2018 ◽  
Vol 52 (5-6) ◽  
pp. 2685-2702 ◽  
Author(s):  
Elisa Palazzi ◽  
Luca Mortarini ◽  
Silvia Terzago ◽  
Jost von Hardenberg

2020 ◽  
Author(s):  
Richard Bintanja ◽  
Karin van der Wiel ◽  
Eveline van der Linden ◽  
Jesse Reusen ◽  
Linda Bogerd ◽  
...  

<p>The Arctic region is projected to experience amplified warming as well as strongly increasing precipitation rates. Equally important to trends in the mean climate are changes in interannual variability, but changes in precipitation fluctuations are highly uncertain and the associated processes unknown. Here we use various state-of-the-art global climate model simulations to show that interannual variability of Arctic precipitation will likely increase markedly (up to 40% over the 21<sup>st</sup> century), especially in summer. This can be attributed to increased poleward atmospheric moisture transport variability associated with enhanced moisture content, possibly modulated by atmospheric dynamics. Because both the means and variability of Arctic precipitation will increase, years/seasons with excessive precipitation will occur more often, as will the associated impacts.</p>


Sign in / Sign up

Export Citation Format

Share Document