niti rotary instruments
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
Alessio Zanza ◽  
Marco Seracchiani ◽  
Rodolfo Reda ◽  
Gabriele Miccoli ◽  
Luca Testarelli ◽  
...  

Since there are no reviews of the literature on this theme, the aim of this narrative review is to summarize the metallurgical tests used in endodontics, pointing out their functional use and their pros and cons and giving readers a user-friendly guide to serve as an orientation aid in the plethora of metallurgical tests. With this purpose, a literature search for articles published between January 2001 and December 2021 was conducted, using the electronic database PubMed to collect all published articles regarding the metallurgical tests used in endodontics for the evaluation of NiTi rotary instruments. The search was conducted using the following keywords: “metallurgy”, “differential scanning calorimetry” (DSC), “X-ray diffraction” (XRD), “atomic force microscopy” (AFM), “energy-dispersive X-ray spectroscopy” (EDS), “focused ion beam analysis” (FIB) and “Auger electron spectroscopy” (AES) combined with the term “endodontics” or “NiTi rotary instruments”. Considering the inclusion and exclusion criteria, of the 248 articles found, only 81 were included in the narrative review. According to the results, more than 50% of the selected articles were published in one of the two most relevant journals in endodontics: International Endodontic Journal (22.2%) and Journal of Endodontics (29.6%). The most popular metallurgical test was DSC, with 43 related articles, followed by EDS (33 articles), AFM (22 articles) and XRD (21 articles). Few studies were conducted using other tests such as FIB (2 articles), micro-Raman spectroscopy (4 articles), metallographic analysis (7 articles) and Auger electron spectroscopy (2 articles).


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6324
Author(s):  
Alessio Zanza ◽  
Marco Seracchiani ◽  
Rodolfo Reda ◽  
Dario Di Nardo ◽  
Gianluca Gambarini ◽  
...  

The aim of this study was to assess the role of the crystallographic phase of Nickel-titanium (NiTi) rotary instruments in determining their torsional resistance during different bending conditions, such as different degrees and angles of curvature. 200 F-One 20.04 instruments (Fanta Dental, Shanghai, China) were used, 100 austenitic instruments and 100 martensitic instruments. Each group was divided in 5 subgroups according to the different bending conditions (straight canal, 90° or 60° of curvature degrees and 3 mm or 5 mm of radius of curvature). The static torsional test was performed by using a device composed of an electric motor capable of recording torque values (N·cm); a vice used to secure the instruments at 3 mm from the tip; and artificial canals, which allow instruments to remain flexed during test. Each instrument was rotated at 500 rpm with a torque limit set to 5.5 Ncm until its fracture. Torque at Fracture (TtF) was registered. A scanning electron microscopy (SEM) observation was conducted. The collected data confirm that an increase in the angle of curvature and a decrease in the radius of curvature of the artificial canals lead to an increase of TtF values with a statistically significant difference (p < 0.05), both in the austenitic and martensitic groups. Regarding the comparison between austenitic and martensitic groups in the same bending condition, a statistically significant difference was found only when the torsional test was performed in the canals with the degrees of curvature of 90° and the radius of curvature of 3 mm and 5 mm, with the austenitic instruments showing a higher TtF than the martensitic ones. In conclusion, it can be stated that the crystallographic phase influences the maximum torque at fracture when the instruments are subjected to severe bending and that the radius of curvature significantly influences their torsional resistance.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5295
Author(s):  
Hyo Jin Jo ◽  
Sang Won Kwak ◽  
Hyeon-Cheol Kim ◽  
Sung Kyo Kim ◽  
Jung-Hong Ha

This study compared the torsional resistance of heat-treated nickel-titanium (NiTi) instruments under different temperature conditions. Four thermomechanically treated single-use NiTi rotary instruments were selected for this study: OneShape (OS), OneCurve (OC), WaveOne Gold (WOG) and HyFlex EDM (HFE). Each instrument was further subdivided by temperature into 2 subgroups. Maximum torque and the distortion angle until fracture occurred were evaluated. Differential scanning calorimetry analysis was performed to measure the phase transformation temperature. Statistical analysis was performed using a two-way ANOVA and t-test (p < 0.05). Fractured fragments were observed using scanning electron microscopy (SEM). The two-way ANOVA showed no significant differences for different temperature conditions. At both room (RT) and body temperature (BT), OS was predominantly austenite while HFE was martensite. OC and WOG were predominantly martensite at RT and mixed phase at BT. At BT, more than half of WOG was martensite, while half of OC was austenite. SEM examination showed no topographical differences between instruments in different temperature groups. In relation to a limitation of this study, there was no difference in torsional resistance of NiTi rotary instruments between the BT and RT conditions. This implies that clinicians do not need to consider a decrease of torsional resistance of heat-treated NiTi instruments at BT.


2021 ◽  
Vol 12 (2) ◽  
pp. 95-96
Author(s):  
Andrea Del Giudice ◽  
Andrea Cicconetti ◽  
Edit Xhajanka ◽  
Federico V Obino ◽  
Gabriele Miccoli ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5246
Author(s):  
Sangmi Ahn ◽  
Jung-Hong Ha ◽  
Sang Won Kwak ◽  
Hyeon-Cheol Kim

Nickel-titanium (NiTi) endodontic rotary instruments are used extensively in root canal procedures by both general dentists and specialists. However, their vulnerability to fracture is the major reason for clinicians’ concern regarding their use. The objective of this study was to investigate the potential effects of spring machining of the file shaft on the fatigue and torsional resistances of NiTi rotary instruments. Three types of NiTi rotary systems with (S) and without (NS) spring machining were used in this study (n = 15 each): a spring file (SPR; #25/.06, SPR-S, SPR-NS), a ProTaper Next X2 (PTN; #25/variable taper, PTN-S, PTN-NS), and a ProTaper Gold F2 (PTG; #25/variable taper, PTG-S, PTG-NS). Spring machining was adjusted on the 6 mm of each file system’s shaft via a laser cutting process. The number of rotation cycles until fracture (i.e., cyclic fatigue resistance), ultimate torsional strength, the distortion angle, and the toughness of each subgroup were estimated with specially designed devices. The results were analyzed using a paired t-test at a significance level of 95%. NiTi rotary instruments with spring machining exhibited a higher cyclic fatigue resistance than instruments without spring machining. The groups with spring machining exhibited a higher toughness and larger distortion angle than the groups without it (p < 0.05). In conclusion, spring machining on the shank of NiTi instruments may provide a stress-bearing area and attenuate the torsional and cyclic fatigue of NiTi rotary instruments.


2020 ◽  
Vol 46 (3) ◽  
pp. 315-322
Author(s):  
Kasra Karamifar ◽  
Sama Samavi ◽  
Mohammad Ali Saghiri

2020 ◽  
Vol 8 ◽  
pp. 2050313X2090782
Author(s):  
Mothanna K AlRahabi ◽  
Hani M Ghabbani

The frequency of separation of NiTi rotary instruments has increased with the increasing use of these instruments, and this error may result from inadequate experience of using these instruments. This iatrogenic error can complicate root canal treatment, and special experience is required to manage this problem. This case report describes the management of the separation of an F3 instrument from a ProTaper NiTi rotary system. A 30-year-old man was referred to the College of Dentistry, Taibah University (Saudi Arabia) with an intracanal separated NiTi rotary instrument (F3 of the ProTaper system; Dentsply Maillefer, Ballaigues, Switzerland) in the canal of the maxillary right canine. The separated instrument was removed by using the modified hollow tube–based extractor system. The present case revealed that sometimes a simple method can be an effective alternative of a professional method; using NiTi rotary instruments with strict adherence is important for the prevention of instrument separation.


2019 ◽  
Vol 7 (21) ◽  
pp. 3647-3654 ◽  
Author(s):  
Tamer M. Hamdy ◽  
Manar Galal ◽  
Amira Galal Ismail ◽  
Rasha M. Abdelraouf

BACKGROUND: Contemporary nickel-titanium (NiTi) rotary endodontic instruments had a revolutionary impact on the success of root canal treatment. AIM: To evaluate the flexibility, microstructure and elemental analysis of four different recent NiTi rotary instruments, namely; Wave One Gold, TF adaptive, HyFlex EDM and Gr_Reciproc Blue compared to conventional Protaper Universal (F2). MATERIAL AND METHODS: The NiTi rotary files were subjected to cantilever bending test to evaluate their flexibility. The microstructural characteristics and elemental analysis were examined via scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDX). RESULTS: The TF adaptive, HyFlex EDM and Wave One Gold endodontic files showed significantly lower cantilever bending values (i.e., higher flexibility) than Protaper F2 and Gr_Reciproc Blue (p < 0.05). The SEM micrographs showed that the bulk of all examined files showed multiple striations due to the cutting process, on the other hand, their external surfaces were different: The Protaper Universal F2 showed multiple voids, while the TF Adaptive surface exhibited more uniform structure. The Hyflex EDM had a crater-like surface, whereas Wave one Gold showed machining grooves with minimum defects, while Reciproc Blue displayed machining grooves with random scratch lines. There was a significant difference in bulk and surface elemental analysis of the various examined files, yet composed mainly of the same elements. CONCLUSION: Chemical composition, heat treatment, manufacturing process and geometrical design of the NiTi rotary instrument have a great influence on their flexibility and microstructure.


Sign in / Sign up

Export Citation Format

Share Document