saline alkaline soils
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 14 (1) ◽  
pp. 226
Author(s):  
Qianyi Gu ◽  
Yang Han ◽  
Yaping Xu ◽  
Haiyan Yao ◽  
Haofang Niu ◽  
...  

Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Hongna ◽  
Shi Junmei ◽  
Tao Leyuan ◽  
Han Xiaori ◽  
Lin Guolin ◽  
...  

Spermidine (Spd) is known to protect macromolecules involved in physiological and biochemical processes in plants. However, it is possible that Spd also plays an osmotic regulatory role in promoting the seed germination of Leymus chinensis (L. chinensis) under salt-alkali stress. To investigate this further, seeds of L. chinensis were soaked in Spd solution or distilled water, and a culture experiment was performed by sowing the soaked seeds in saline-alkaline soils. The data showed that the Spd priming resulted in an increase of more than 50% in soluble sugar content and an increase of more than 30% in proline content in the germinating seeds. In addition, the Spd priming resulted in an increase of more than 30% in catalase activity and an increase of more than 25% in peroxidase activity in the germinating seeds and effectively mitigated the oxidative damage to the plasma membrane in the germinating seeds under salt-alkali stress. Moreover, the Spd priming of seeds affected the accumulation of polyamine (PA) and maintained the activities of macromolecules involved in physiological metabolism in germinating seeds exposed to salt-alkali stress. Furthermore, the Spd priming treatment increased the hydrogen peroxide (H2O2) level to more than 30% and the Ca2+ concentration to more than 20% in the germinating seeds, thus breaking the dormancy induction pathways in L. chinensis seeds through beneficial hormone enrichment. This study provides an insight into the Spd-mediated regulation pathway during exogenous Spd priming of L. chinensis seeds, which mitigates osmotic and oxidative damage and maintains the integrality of the cell lipid membrane. Thus, exogenous Spd priming increases PA oxidase activity and maintains the accumulation of H2O2. We found that the H2O2 beneficially affected the balance of Ca2+ and hormones, promoting the vigor and germination of L. chinensis in response to salt-alkali stress.


2021 ◽  
Vol 9 (4) ◽  
pp. 129-135
Author(s):  
Vivek Kumar Yadav ◽  
◽  

The pigment content in Blue-green algae is a specific feature of each species. The pigment variation is specific features among microalgae. The paper aim to analyze cyanobacterial extracts of different Usar soil of Azamgarh and Varanasi, Uttar Pradesh. The main object here is the importance of the blue green algae especially because of the pigments present in this class of algae. Pigments from natural sources are gaining more importance mainly due to health and environmental issues. Algae contain a wide range of pigments. Three major classes of pigments are chlorophylls, carotenoids (carotenes and xanthophylls) and phycobilins (Phycocyanin and phycoerythrin). Our present study investigates the efficiency for phycobiliprotein pigment production from four different cyanobacteria Hapalosiphon sp., Phormidium sp., Anabaena sp. and Nostoc sp. The harvested and dried biomass was subjected to extract pigments using different solvents. Thin Layer Chromatography was performed from extracted pigments using Acetone as extraction solvents. And running solvent especially for phycocyanin pigment was optimized and concluded that Petroleum ether and Acetone in the ratio of 7:3. This paper presents the information about the natural pigments of cyanobacteria and how they can be extracted and identified using different procedures and spectrophotometry. It emphasizes that the principal algal pigments are Phycobilins, Chlorophylls and Carotenoids.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ruoyi Lin ◽  
Jiexuan Zheng ◽  
Lin Pu ◽  
Zhengfeng Wang ◽  
Qiming Mei ◽  
...  

Abstract Background Canavalia rosea (Sw.) DC. (bay bean) is an extremophile halophyte that is widely distributed in coastal areas of the tropics and subtropics. Seawater and drought tolerance in this species may be facilitated by aquaporins (AQPs), channel proteins that transport water and small molecules across cell membranes and thereby maintain cellular water homeostasis in the face of abiotic stress. In C. rosea, AQP diversity, protein features, and their biological functions are still largely unknown. Results We describe the action of AQPs in C. rosea using evolutionary analyses coupled with promoter and expression analyses. A total of 37 AQPs were identified in the C. rosea genome and classified into five subgroups: 11 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, 11 Nod26-like intrinsic proteins, 4 small and basic intrinsic proteins, and 1 X-intrinsic protein. Analysis of RNA-Seq data and targeted qPCR revealed organ-specific expression of aquaporin genes and the involvement of some AQP members in adaptation of C. rosea to extreme coral reef environments. We also analyzed C. rosea sequences for phylogeny reconstruction, protein modeling, cellular localizations, and promoter analysis. Furthermore, one of PIP1 gene, CrPIP1;5, was identified as functional using a yeast expression system and transgenic overexpression in Arabidopsis. Conclusions Our results indicate that AQPs play an important role in C. rosea responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role AQPs play in mediating C. rosea adaptation to extreme environments, but also improve our knowledge of plant aquaporin evolution more generally.


Author(s):  
Zhechao Zhang ◽  
Shicheng Feng ◽  
Junqing Luo ◽  
Baihui Hao ◽  
Fengwei Diao ◽  
...  

2021 ◽  
Author(s):  
Ruoyi Lin ◽  
Jiexuan Zheng ◽  
Lin Pu ◽  
Zhengfeng Wang ◽  
Qiming Mei ◽  
...  

Abstract Background: Canavalia rosea (Sw.) DC. (bay bean) is an extremophile halophyte that is widely distributed in coastal areas of the tropics and subtropics. Seawater and drought tolerance in this species may be facilitated by aquaporins (AQPs), channel proteins that transport water and small molecules across cell membranes and thereby maintain cellular water homeostasis in the face of abiotic stress. In C. rosea, AQP diversity, protein features, and their biological functions are still largely unknown.Results: We describe the action of AQPs in C. rosea using evolutionary analyses coupled with promoter and expression analyses. A total of 37 AQPs were identified in the C. rosea genome and classified into five subgroups: 11 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, 11 Nod26-like intrinsic proteins, 4 small and basic intrinsic proteins, and 1 X-intrinsic protein. Analysis of RNA-Seq data and targeted qPCR revealed organ-specific expression of aquaporin genes and the involvement of some AQP members in adaptation of C. rosea to extreme coral reef environments. We also analyzed C. rosea sequences for phylogeny reconstruction, protein modeling, cellular localizations, and promoter analysis. Furthermore, one of PIP1 gene, CrPIP1;5, was identified as functional using a yeast expression system and transgenic overexpression in Arabidopsis.Conclusions: Our results indicate that AQPs play an important role in C. rosea responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role AQPs play in mediating C. rosea adaptation to extreme environments, but also improve our knowledge of plant aquaporin evolution more generally.


2021 ◽  
pp. 17-41
Author(s):  
Shuang Wang ◽  
Lei Sun ◽  
Manik Prabhu Narsing Rao ◽  
Lihua Wang ◽  
Yue Wang ◽  
...  

CATENA ◽  
2021 ◽  
Vol 196 ◽  
pp. 104882 ◽  
Author(s):  
Lipeng Wu ◽  
Shirong Zhang ◽  
Ronghui Ma ◽  
Mengmeng Chen ◽  
Wenliang Wei ◽  
...  

2020 ◽  
Vol 66 (No. 12) ◽  
pp. 639-647
Author(s):  
Jian Fu ◽  
Yao Xiao ◽  
Zhihua Liu ◽  
Yifei Zhang ◽  
Yufeng Wang ◽  
...  

The Songnen Plain is an important agricultural base in China and one of the important areas of distribution of saline-alkaline soils in the cold region. Saline-alkaline soils severely restrict maize growth. This study was to potentially promote the soil nutrient in the maize rhizosphere, microbes diversity, and maize yield by Trichoderma asperellum in saline-alkaline soil of the cold region. In the present study, we applied different amounts of T. asperellum in field experiments for three consecutive years. High-throughput sequencing was used to analyse the impact of Trichoderma on microbes diversity in maize rhizosphere soils. Changes in crop yield and soil nutrients were also monitored. T. asperellum treatment significantly increased the relative abundance of beneficial microbes genera. In the control treatment, the pathogenic microbes were the dominant genera. Pearson’s correlation analysis revealed that changes in the soil microbial community composition were closely related to soil nutrients and were highly correlated with T. asperellum treatment concentration. Further, T. asperellum treatment increased crop yield by 4.87–20.26%. These findings suggest that T. asperellum treatment optimised the microenvironment of the maize rhizosphere soil, alleviated microbial community degeneration in cold region saline-alkaline soil, and promoted maize growth.  


Sign in / Sign up

Export Citation Format

Share Document