scholarly journals Trichoderma asperellum improves soil microenvironment in different growth stages and yield of maize in saline-alkaline soil of the Songnen Plain

2020 ◽  
Vol 66 (No. 12) ◽  
pp. 639-647
Author(s):  
Jian Fu ◽  
Yao Xiao ◽  
Zhihua Liu ◽  
Yifei Zhang ◽  
Yufeng Wang ◽  
...  

The Songnen Plain is an important agricultural base in China and one of the important areas of distribution of saline-alkaline soils in the cold region. Saline-alkaline soils severely restrict maize growth. This study was to potentially promote the soil nutrient in the maize rhizosphere, microbes diversity, and maize yield by Trichoderma asperellum in saline-alkaline soil of the cold region. In the present study, we applied different amounts of T. asperellum in field experiments for three consecutive years. High-throughput sequencing was used to analyse the impact of Trichoderma on microbes diversity in maize rhizosphere soils. Changes in crop yield and soil nutrients were also monitored. T. asperellum treatment significantly increased the relative abundance of beneficial microbes genera. In the control treatment, the pathogenic microbes were the dominant genera. Pearson’s correlation analysis revealed that changes in the soil microbial community composition were closely related to soil nutrients and were highly correlated with T. asperellum treatment concentration. Further, T. asperellum treatment increased crop yield by 4.87–20.26%. These findings suggest that T. asperellum treatment optimised the microenvironment of the maize rhizosphere soil, alleviated microbial community degeneration in cold region saline-alkaline soil, and promoted maize growth.  

Archaea ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yendi E. Navarro-Noya ◽  
César Valenzuela-Encinas ◽  
Alonso Sandoval-Yuriar ◽  
Norma G. Jiménez-Bueno ◽  
Rodolfo Marsch ◽  
...  

In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic CandidatusNitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils.Halobiforma,Halostagnicola,Haloterrigena, andNatronomonaswere found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH.


2022 ◽  
Vol 14 (1) ◽  
pp. 226
Author(s):  
Qianyi Gu ◽  
Yang Han ◽  
Yaping Xu ◽  
Haiyan Yao ◽  
Haofang Niu ◽  
...  

Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhiming Xie ◽  
Ri Song ◽  
Hongbo Shao ◽  
Fengbin Song ◽  
Hongwen Xu ◽  
...  

The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), and intercellular CO2concentration (Ci) of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1) of Si supplying. Experimental results showed that the values ofPn,gs, andCiof maize were significantly enhanced while the values ofEof maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg·ha−1 Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.


2018 ◽  
Vol 64 (12) ◽  
pp. 925-936 ◽  
Author(s):  
Juntao Cui ◽  
Yanan Li ◽  
Chengyu Wang ◽  
Kyung Seok Kim ◽  
Tianye Wang ◽  
...  

The characteristics of the rhizosphere microbial community across different cultivation years (from 1, 3, 5, 15, 20, and 50 years) in saline–alkaline paddy soils in Songnen Plain of China were investigated based on sequence variation of 16S rDNA using Illumina MiSeq sequencing. The results showed that the microbial community diversity varied across cultivation years, showing higher diversity in cultivation years >15 than in cultivation years <15. The dominant microbial community of the rhizosphere was mainly composed of Proteobacteria, Acidobacteria, Firmicutes, and Bacteroidetes. Furthermore, soil microbial diversity appeared to be affected directly by changes in soil properties corresponding to cultivated years. Diversity of Proteobacteria decreased as cultivated years increased; however, that of Acidobacteria showed the opposite direction. In addition, the soil microbial communities were clustered into two main groups: one from the sites cultivated for fewer than 15 years, and the other from the sites cultivated for more than 15 years. The abundance of nitrogen-fixing microorganisms in the soil sample was significantly higher in soils cultivated for under 15 years than in those cultivated for over 15 years (P < 0.05). Moreover, there was an obvious negative correlation between the cultivated years and Methanosarcina. Our findings on the dynamics of microbial community and its specific function in response to variable soil conditions are important for understanding and improving physical and chemical characteristics of saline–alkaline soil in Songnen Plain of China.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


Soil Research ◽  
1992 ◽  
Vol 30 (5) ◽  
pp. 737 ◽  
Author(s):  
IJ Rochester ◽  
GA Constable ◽  
DA Macleod

The literature pertaining to N immobilization indicates that ammonium is immobilized in preference to nitrate. Our previous research in an alkaline clay soil has indicated substantial immobilization of nitrate. To verify the preference for immobilization of nitrate or ammonium by the microbial biomass in this and other soil types, the immobilization of ammonium and nitrate from applications of ammonium sulfate and potassium nitrate following the addition of cotton crop stubble was monitored in six soils. The preference for ammonium or nitrate immobilization was highly correlated with each soil's pH, C/N ratio and its nitrification capacity. Nitrate was immobilized in preference to ammonium in neutral and alkaline soils; ammonium was preferentially immobilized in acid soils. No assimilation of nitrate (or nitrification) occurred in the most acid soil. Similarly, little assimilation of ammonium occurred in the most alkaline soil. Two physiological pathways, the nitrate assimilation pathway and the ammonium assimilation pathway, appear to operate concurrently; the dominance of one pathway over the other is indicated by soil pH. The addition of a nitrification inhibitor to an alkaline soil enhanced the immobilization of ammonium. Recovery of 15N confirmed that N was not denitrified, but was biologically immobilized. The immobilization of 1 5 ~ and the apparent immobilization of N were similar in magnitude. The identification of preferential nitrate immobilization has profound biological significance for the cycling of N in alkaline soils.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7949 ◽  
Author(s):  
Chao Yang ◽  
Jingjing Li ◽  
Yingjun Zhang

Background Soil aggregate-size classes, structural units of soil, are the important factors regulating soil organic carbon (SOC) turnover. However, the processes of litter C mineralization and storage in different aggregates-size classes are poorly understood, especially in the highly alkaline soils of north China. Here, we ask how four different aggregate sizes influence rates of C release (Cr) and SOC storage (Cs) in response to three types of plant litter added to an un-grazed natural grassland. Methods Highly alkaline soil samples were separated into four dry aggregate classes of different sizes (2–4, 1–2, 0.25–1, and <0.25 mm). Three types of dry dead plant litter (leaf, stem, and all standing dead aboveground litter) of Leymus chinensis were added to each of the four aggregate class samples. Litter mass loss rate, Cr, and Cs were measured periodically during the 56-day incubation. Results The results showed that the mass loss in 1–2 mm aggregates was significantly greater than that in other size classes of soil aggregates on both day 28 and day 56. Macro-aggregates (1–2 mm) had the highest Cr of all treatments, whereas 0.25–1 mm aggregates had the lowest. In addition, a significant negative relationship was found between Cs/Cr and soil pH. After incubation for 28 and 56 days, the Cs was also highest in the 1–2 mm aggregates, which implied that the macro-aggregates had not only a higher CO2 release capacity, but also a greater litter C storage capacity than the micro-aggregates in the highly alkaline soils of north China.


Sign in / Sign up

Export Citation Format

Share Document