scholarly journals Cardiac and Autonomic Dysfunctions Assessed Through Recurrence Quantitative Analysis of Electrocardiogram Signals and an Application to the 6-Hydroxydopamine Parkinson’s Disease Animal Model

2021 ◽  
Vol 12 ◽  
Author(s):  
Lucas Shinoda ◽  
Laís Damasceno ◽  
Leandro Freitas ◽  
Ruy Campos ◽  
Sergio Cravo ◽  
...  

A classic method to evaluate autonomic dysfunction is through the evaluation of heart rate variability (HRV). HRV provides a series of coefficients, such as Standard Deviation of n-n intervals (SDNN) and Root Mean Square of Successive Differences (RMSSD), which have well-established physiological associations. However, using only electrocardiogram (ECG) signals, it is difficult to identify proper autonomic activity, and the standard techniques are not sensitive and robust enough to distinguish pure autonomic modulation in heart dynamics from cardiac dysfunctions. In this proof-of-concept study we propose the use of Poincaré mapping and Recurrence Quantification Analysis (RQA) to identify and characterize stochasticity and chaoticity dynamics in ECG recordings. By applying these non-linear techniques in the ECG signals recorded from a set of Parkinson’s disease (PD) animal model 6-hydroxydopamine (6-OHDA), we showed that they present less variability in long time epochs and more stochasticity in short-time epochs, in their autonomic dynamics, when compared with those of the sham group. These results suggest that PD animal models present more “rigid heart rate” associated with “trembling ECG” and bradycardia, which are direct expressions of Parkinsonian symptoms. We also compared the RQA factors calculated from the ECG of animal models using four computational ECG signals under different noise and autonomic modulatory conditions, emulating the main ECG features of atrial fibrillation and QT-long syndrome.

2021 ◽  
Author(s):  
Lucas Shinoda ◽  
Laís Damasceno ◽  
Leandro Freitas ◽  
Sergio Cravo ◽  
Ruy Campos ◽  
...  

Abstract A classic method to evaluate autonomic dysfunction is through the evaluation of heart rate variability (HRV). HRV provides a series of coefficients, such as SDNN (Standard Deviation of n-n intervals) and RMSSD (Root Mean Square of Successive Differences), which have well-established physiological associations. However, using only electrocardiogram (ECG) signals, it is difficult to identify proper autonomic activity, and the standard techniques are not sensitive and robust enough to distinguish pure autonomic modulation in heart dynamics from cardiac dysfunctions. By using Poincaré mapping and Recurrence Quantification Analysis (RQA), we were able to identify and characterize stochasticity and chaoticity dynamics in ECG recordings, using them to describe autonomic and heart dynamics. By applying these nonlinear techniques in the ECG signals recorded from a set of Parkinson disease animal model (6-OHDA), we show they present less variability in long time epochs and more stochasticity in short-time epochs, in their autonomic dynamics, when compared with those of the sham group. These results indicate that PD (Parkinson’s Disease) animal models present more “rigid heart rate” associated with “trembling ECG” and bradycardia, which are direct expressions of Parkinsonian symptoms. We also compared the RQA factors calculated from the ECG of animal models using four computational ECG signals under different noise and autonomic modulatory conditions, emulating atrial fibrillation and QT-long syndrome. We concluded, from Poincaré Map and RQA techniques, that PD animal models are more correlated with atrial fibrillation, with high variation according to autonomic modulation. As the Abstract should be able stand independantly of the main text, please do not abbreviate terms used only once in the Abstract.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kyota Fujita ◽  
Yusaku Nakabeppu ◽  
Mami Noda

Since the first description of Parkinson's disease (PD) nearly two centuries ago, a number of studies have revealed the clinical symptoms, pathology, and therapeutic approaches to overcome this intractable neurodegenerative disease. 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) are neurotoxins which produce Parkinsonian pathology. From the animal studies using these neurotoxins, it has become well established that oxidative stress is a primary cause of, and essential for, cellular apoptosis in dopaminergic neurons. Here, we describe the mechanism whereby oxidative stress evokes irreversible cell death, and propose a novel therapeutic strategy for PD using molecular hydrogen. Hydrogen has an ability to reduce oxidative damage and ameliorate the loss of nigrostriatal dopaminergic neuronal pathway in two experimental animal models. Thus, it is strongly suggested that hydrogen might provide a great advantage to prevent or minimize the onset and progression of PD.


2015 ◽  
Vol 51 (1) ◽  
pp. 111-115 ◽  
Author(s):  
Débora Dalla Vecchia ◽  
Marissa Giovanna Schamne ◽  
Marcelo Machado Ferro ◽  
Ana Flávia Chaves dos Santos ◽  
Camila Lupepsa Latyki ◽  
...  

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the slow and progressive death of dopaminergic neurons in the (substantia nigra pars compact). Hypericum perforatum (H. perforatum) is a plant widely used as an antidepressant, that also presents antioxidant and anti-inflammatory properties. We evaluated the effects of H. perforatum on the turning behavior of rats submitted to a unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle as an animal model of PD. The animals were treated with H. perforatum (100, 200, or 400 mg/kg, v.o.) for 35 consecutive days (from the 28th day before surgery to the 7th day after). The turning behavior was evaluated at 7, 14 and 21 days after the surgery, and the turnings were counted as contralateral or ipsilateral to the lesion side. All tested doses significantly reduced the number of contralateral turns in all days of evaluation, suggesting a neuroprotective effect. However, they were not able to prevent the 6-OHDA-induced decrease of tyrosine hydroxylase expression in the lesioned striatum. We propose that H. perforatum may counteract the overexpression of dopamine receptors on the lesioned striatum as a possible mechanism for this effect. The present findings provide new evidence that H. perforatum may represent a promising therapeutic tool for PD.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1551 ◽  
Author(s):  
Valeria C. Gonçalves ◽  
Daniel J. L. L. Pinheiro ◽  
Tomás de la Rosa ◽  
Antônio-Carlos G. de Almeida ◽  
Fúlvio A. Scorza ◽  
...  

Patients with Parkinson’s disease (PD) manifest nonmotor and motor symptoms. Autonomic cardiovascular dysregulation is a common nonmotor manifestation associated with increased morbimortality. Conventional clinical treatment alleviates motor signs but does not change disease progression and fails in handling nonmotor features. Nutrition is a key modifiable determinant of chronic disease. This study aimed to assess the effects of propolis on cardiological features, heart rate (HR) and heart rate variability (HRV) and on nigrostriatal dopaminergic damage, detected by tyrosine hydroxylase (TH) immunoreactivity, in the 6-hydroxydopamine (6-OHDA) rat model of PD. Male Wistar rats were injected bilaterally with 6-OHDA or saline into the striatum and were treated with propolis or water for 40 days. Autonomic function was assessed by time domain parameters (standard deviation of all normal-to-normal intervals (SDNN) and square root of the mean of the squared differences between adjacent normal RR intervals (RMSSD)) of HRV calculated from electrocardiogram recordings. Reductions in HR (p = 1.47 × 10−19), SDNN (p = 3.42 × 10−10) and RMSSD (p = 8.2 × 10−6) detected in parkinsonian rats were reverted by propolis. Propolis attenuated neuronal loss in the substantia nigra (p = 5.66 × 10−15) and reduced striatal fiber degeneration (p = 7.4 × 10−5) in 6-OHDA-injured rats, which also showed significant weight gain (p = 1.07 × 10−5) in comparison to 6-OHDA-lesioned counterparts. Propolis confers cardioprotection and neuroprotection in the 6-OHDA rat model of PD.


2019 ◽  
Vol 20 (21) ◽  
pp. 5402 ◽  
Author(s):  
Kyohei Kin ◽  
Takao Yasuhara ◽  
Masahiro Kameda ◽  
Isao Date

Parkinson’s disease (PD) is a chronic and progressive movement disorder and the second most common neurodegenerative disease. Although many studies have been conducted, there is an unmet clinical need to develop new treatments because, currently, only symptomatic therapies are available. To achieve this goal, clarification of the pathology is required. Attempts have been made to emulate human PD and various animal models have been developed over the decades. Neurotoxin models have been commonly used for PD research. Recently, advances in transgenic technology have enabled the development of genetic models that help to identify new approaches in PD research. However, PD animal model trends have not been investigated. Revealing the trends for PD research will be valuable for increasing our understanding of the positive and negative aspects of each model. In this article, we clarified the trends for animal models that were used to research PD in the 2000s, and we discussed each model based on these trends.


2001 ◽  
Vol 122 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Manuel Rodrı́guez Dı́az ◽  
Patricio Abdala ◽  
Pedro Barroso-Chinea ◽  
José Obeso ◽  
Tomás González-Hernández

2015 ◽  
Vol 112 (19) ◽  
pp. E2517-E2526 ◽  
Author(s):  
Nikhil M. Urs ◽  
Simone Bido ◽  
Sean M. Peterson ◽  
Tanya L. Daigle ◽  
Caroline E. Bass ◽  
...  

Parkinson’s disease (PD) is characterized by severe locomotor deficits and is commonly treated with the dopamine (DA) precursorl-3,4-dihydroxyphenylalanine (l-DOPA), but its prolonged use causes dyskinesias referred to asl-DOPA–induced dyskinesias (LIDs). Recent studies in animal models of PD have suggested that dyskinesias are associated with the overactivation of G protein-mediated signaling through DA receptors. β-Arrestins desensitize G protein signaling at DA receptors (D1R and D2R) in addition to activating their own G protein-independent signaling events, which have been shown to mediate locomotion. Therefore, targeting β-arrestins in PDl-DOPA therapy might prove to be a desirable approach. Here we show in a bilateral DA-depletion mouse model of Parkinson’s symptoms that genetic deletion of β-arrestin2 significantly limits the beneficial locomotor effects while markedly enhancing the dyskinesia-like effects of acute or chronicl-DOPA treatment. Viral rescue or overexpression of β-arrestin2 in knockout or control mice either reverses or protects against LIDs and its key biochemical markers. In other more conventional animal models of DA neuron loss and PD, such as 6-hydroxydopamine–treated mice or rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine–treated nonhuman primates, β-arrestin2 overexpression significantly reduced dyskinesias while maintaining the therapeutic effect ofl-DOPA. Considerable efforts are being spent in the pharmaceutical industry to identify therapeutic approaches to block LIDs in patients with PD. Our results point to a potential therapeutic approach, whereby development of either a genetic or pharmacological intervention to enhance β-arrestin2- or limit G protein-dependent D1/D2R signaling could represent a more mechanistically informed strategy.


Sign in / Sign up

Export Citation Format

Share Document