scholarly journals Fatigue and collapse of cyclically bent strip of amorphous solid

Author(s):  
Bhanu Prasad Bhowmik ◽  
H. G. E. Hentchel ◽  
Itamar Procaccia

Abstract Fatigue caused by cyclic bending of a piece of material, resulting in its mechanical failure, is a phenomenon that had been studied for ages by engineers and physicists alike. In this Letter we study such fatigue in a strip of athermal amorphous solid. On the basis of atomistic simulations we conclude that the crucial quantity to focus on is the accumulated damage. Al- though this quantity exhibits large sample-to-sample fluctuations, its dependence on the loading determines the statistics of the number of cycles to failure. Thus we can provide a scaling theory for the Wo ̈hler plots of mean number of cycles for failure as a function of the loading amplitude.

Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


2017 ◽  
Vol 13 (2) ◽  
pp. 262-283 ◽  
Author(s):  
Vladimir Kobelev

Purpose The purpose of this paper is to propose the new dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach. The anticipated unified propagation function describes the infinitesimal crack-length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification functions with different number of fitting parameters are proposed. On one hand, the closed-form analytical solutions facilitate the universal fitting of the constants of the fatigue law over all stages of fatigue. On the other hand, the closed-form solution eases the application of the fatigue law, because the solution of nonlinear differential equation turns out to be dispensable. The main advantage of the proposed functions is the possibility of having closed-form analytical solutions for the unified crack growth law. Moreover, the mean stress dependence is the immediate consequence of the proposed law. The corresponding formulas for crack length over the number of cycles are derived. Design/methodology/approach In this paper, the method of representation of crack propagation functions through appropriate elementary functions is employed. The choice of the elementary functions is motivated by the phenomenological data and covers a broad region of possible parameters. With the introduced crack propagation functions, differential equations describing the crack propagation are solved rigorously. Findings The resulting closed-form solutions allow the evaluation of crack propagation histories on one hand, and the effects of stress ratio on crack propagation on the other hand. The explicit formulas for crack length over the number of cycles are derived. Research limitations/implications In this paper, linear fracture mechanics approach is assumed. Practical implications Shortening of evaluation time for fatigue crack growth. Simplification of the computer codes due to the elimination of solution of differential equation. Standardization of experiments for crack growth. Originality/value This paper introduces the closed-form analytical expression for crack length over number of cycles. The new function that expresses the damage growth per cycle is also introduced. This function allows closed-form analytical solution for crack length. The solution expresses the number of cycles to failure as the function of the initial size of the crack and eliminates the solution of the nonlinear ordinary differential equation of the first order. The different common expressions, which account for the influence of the stress ratio, are immediately applicable.


2001 ◽  
Vol 33 ◽  
pp. 333-338 ◽  
Author(s):  
P. J. Langhorne ◽  
V. A. Squire ◽  
C. Fox ◽  
T. G. Haskell

AbstractIt is well known that an incoming ocean swell produces a strain field in a land-fast ice sheet. The attenuation and spectral content of this strain field can be calculated and has been measured. The response of the sea ice to this type of cyclic forcing has also been measured, and in particular we are able to estimate the number of cycles to failure for sea ice loaded at constant amplitude. In this paper we consider the response of the land-fast ice sheet or vast floe to a measured ice-coupled wave field of variable amplitude. We use the Palmgren-Miner cumulative damage law and stress-lifetime curves taken from field experiments to predict the lifetime of the sea-ice sheet as a function of significant wave height and sea-ice brine fraction. Calculations are performed to account for the swell entering a land-fast sea-ice sheet at arbitrary angle, and the influence of c-axis alignment and the presence of pre-existing cracks are discussed.


1966 ◽  
Vol 39 (2) ◽  
pp. 348-364 ◽  
Author(s):  
G. J. Lake ◽  
P. B. Lindley

Abstract Investigations of the dynamic cut growth behavior of vulcanized rubbers indicate that there is a minimum tearing energy at which mechanical rupture of chains occurs. The limiting value is characteristic of each vulcanizate, but is in the region of 0.05 kg/cm. The mechanical fatigue limit, below which the number of cycles to failure increases rapidly, is accurately predicted from this critical tearing energy. Characteristics of cut growth at low tearing energies, and effects of polymer, vulcanizing system, oxygen, and fillers on the critical tearing energy and fatigue limit are discussed.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Lindsay L. Loundagin ◽  
Tannin A. Schmidt ◽  
W. Brent Edwards

Stress fractures are a common overuse injury among runners associated with the mechanical fatigue of bone. Several in vivo biomechanical studies have investigated specific characteristics of the vertical ground reaction force (vGRF) in heel-toe running and have observed an association between increased loading rate during impact and individuals with a history of stress fracture. The purpose of this study was to examine the fatigue behavior of cortical bone using vGRF-like loading profiles, including those that had been decomposed into their respective impact and active phase components. Thirty-eight cylindrical cortical bone samples were extracted from bovine tibiae and femora. Hydrated samples were fatigue tested at room temperature in zero compression under load control using either a raw (n = 10), active (n = 10), low impact (n = 10), or high impact (n = 8) vGRF profile. The number of cycles to failure was quantified and the test was terminated if the sample survived 105 cycles. Fatigue life was significantly greater for both impact groups compared to the active (p < 0.001) and raw (p < 0.001) groups, with all low impact samples and 6 of 8 high impact samples surviving 105 cycles. The mean (± SD) number of cycles to failure for the active and raw groups was 12,133±11,704 and 16,552±29,612, respectively. The results suggest that loading rates associated with the impact phase of a typical vGRF in running have little influence on the mechanical fatigue behavior of bone relative to loading magnitude, warranting further investigation of the mechanism by which increased loading rates are associated with stress fracture.


1998 ◽  
Vol 5 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Larry Byrd ◽  
Michael P. Camden ◽  
Gene E. Maddux ◽  
Larry W. Simmons

The use of micro-channel heat exchangers (MCHEX) with coolant flow passage diameters less than 1 mm has been proposed for heat flux, weight, or volume limited environments. This paper presents room temperature, random amplitude,ε−N(strain versus number of cycles to failure) curves for MCHEX coupons formed by electroplating nickel on a suitable form. These coupons are unique in two aspects; the microstructure formed by electroplating and the presence of holes as an integral part of the structure. The hole diameters range from approximately 10% to 50% to the specimen thickness. The fatigue life of electroformed nickel can be estimated from constant amplitude data using the formulation presented. The heat exchangers with channels parallel to the coupon direction have a lower fatigue life than the solid material.


Author(s):  
Raman Maiti ◽  
Robin Mills

The application of diamond-like carbon coatings to bearing surfaces is widespread from machining to bio-implants and has resulted in significant study of coating properties. The aim of this investigation was to determine the performance of two diamond-like carbon coatings, using chromium and silicon as adhesion layers. Linear reciprocating wear tests were carried out at room temperature using an AISI 440C steel ball reciprocating against the diamond-like carbon-coated metal substrate. The performance of the coatings under different contact pressures (500–3000 MPa); peak sliding velocities (28–378 mm/s); and stroke length, (1.5–4 mm). An electric resistance measurement was used to monitor coating failure owing to the dielectric nature of the tested coatings. An increase in contact pressure resulted in a decrease in number of cycles to failure for both the coatings. However, the number of cycles to failure increased proportionally with sliding speed. In addition, artifacts on the coating and blister formation generated coating debris which acted as a third body during the wear process. The debris caused complete delamination of the coatings initially at the ends of the wear scar. The silicon adhesion layer-coating samples were found to provide a greater resistance to failure due to it being thicker, harder, and more elastic as compared to samples having a chromium adhesion layer.


2016 ◽  
Vol 50 (30) ◽  
pp. 4307-4317 ◽  
Author(s):  
Christos Kassapoglou

An approach to predict static and fatigue failure of composite laminates with holes is presented. Static failure is predicted when the stress averaged over a characteristic distance is equal to the un-notched failure strength. This averaging distance is determined analytically without the use of additional testing or need for extra material parameters. During fatigue loading, the size of the damage region next to the hole is calculated and the strains at the hole edge are determined. These are used along with the stresses just outside the damage region to determine whether failure starts at the hole edge or the edge of the damage region extends. A previously developed fatigue model based on the cycle-by-cycle probability of failure is used to calculate the number of cycles needed for the residual strain at hole edge or the residual strength at the edge of the damage region to fall below the corresponding applied values. The procedure is repeated until laminate failure. The method is also used to predict cycles to failure for impacted specimens. The predictions are in very good agreement with test results.


2017 ◽  
Vol 38 (5) ◽  
pp. 564-570 ◽  
Author(s):  
Jonathon D. Backus ◽  
Daniel Cole Marchetti ◽  
Erik L. Slette ◽  
Kimi D. Dahl ◽  
Travis Lee Turnbull ◽  
...  

Background: Controversy exists regarding the ideal Achilles rupture treatment; however, operative treatment is considered for athletes and active patients. The ideal repair construct is evolving, and the effect of suture caliber or number of core strands has not been studied. Methods: Simulated mid-substance Achilles ruptures were performed in 24 cadavers. Specimens were randomized to three 6-core-strand style repair constructs: (1) 4 No. 2 sutures and two 2-mm tapes (2T); (2) 2 No. 2 sutures and four 2-mm tapes (4T); (3) 12 (double-6-strand) strand repair (12 No. 2-0 sutures [12S]). Repairs were subjected to a cyclic loading protocol representative of postoperative rehabilitation. These data were compared to a previously published standard open repair technique (6-core strands with No. 2 sutures) on 9 specimens tested under the same conditions.6 Results: No significant elongation differences were observed between the repair groups and the previously published standard repair group in the first 2 stages of the simulated rehabilitation protocol. Both the 2T and 12S repairs survived a significantly greater number of cycles to failure ( P = 0.0005, P = 0.0267, respectively) and had a significantly higher failure load ( P = .0005, P = .0118, respectively) compared to the previously published data. These 2 constructs consistently survived the advanced stages of the simulated rehabilitation protocol. The majority of repairs failed at the knots. Conclusions: In this study, the 2T and 12S constructs survived the later stages of our simulated rehabilitation protocol, suggesting that they may be able to accommodate a more aggressive clinical rehabilitation protocol. Substituting suture-tape for 2 core strands or doubling the core strands with a smaller-caliber suture created a biomechanically stronger construct. Clinical Relevance: Achilles repair with an added nonabsorbable, high–tensile strength tape allowed for a stronger construct that may allow for a more aggressive, early rehabilitation protocol and earlier return to function.


Sign in / Sign up

Export Citation Format

Share Document