gametophytic apomixis
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12418
Author(s):  
Aaron Liston ◽  
Kevin A. Weitemier ◽  
Lucas Letelier ◽  
János Podani ◽  
Yu Zong ◽  
...  

Background Hawthorn species (Crataegus L.; Rosaceae tribe Maleae) form a well-defined clade comprising five subgeneric groups readily distinguished using either molecular or morphological data. While multiple subsidiary groups (taxonomic sections, series) are recognized within some subgenera, the number of and relationships among species in these groups are subject to disagreement. Gametophytic apomixis and polyploidy are prevalent in the genus, and disagreement concerns whether and how apomictic genotypes should be recognized taxonomically. Recent studies suggest that many polyploids arise from hybridization between members of different infrageneric groups. Methods We used target capture and high throughput sequencing to obtain nucleotide sequences for 257 nuclear loci and nearly complete chloroplast genomes from a sample of hawthorns representing all five currently recognized subgenera. Our sample is structured to include two examples of intersubgeneric hybrids and their putative diploid and tetraploid parents. We queried the alignment of nuclear loci directly for evidence of hybridization, and compared individual gene trees with each other, and with both the maximum likelihood plastome tree and the nuclear concatenated and multilocus coalescent-based trees. Tree comparisons provided a promising, if challenging (because of the number of comparisons involved) method for visualizing variation in tree topology. We found it useful to deploy comparisons based not only on tree-tree distances but also on a metric of tree-tree concordance that uses extrinsic information about the relatedness of the terminals in comparing tree topologies. Results We obtained well-supported phylogenies from plastome sequences and from a minimum of 244 low copy-number nuclear loci. These are consistent with a previous morphology-based subgeneric classification of the genus. Despite the high heterogeneity of individual gene trees, we corroborate earlier evidence for the importance of hybridization in the evolution of Crataegus. Hybridization between subgenus Americanae and subgenus Sanguineae was documented for the origin of Sanguineae tetraploids, but not for a tetraploid Americanae species. This is also the first application of target capture probes designed with apple genome sequence. We successfully assembled 95% of 257 loci in Crataegus, indicating their potential utility across the genera of the apple tribe.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2133 ◽  
Author(s):  
Timothy A. Dickinson ◽  
Brigitte Xueqi Yan ◽  
Shery Han ◽  
Mehdi Zarrei

We compare biogeographic and morphological parameters of two agamic complexes of western North American hawthorns so as to evaluate possible explanations of the differences in range between sexually reproducing taxa and their apomictic sister taxa. We have documented range, breeding system, morphology, leaf vascular architecture, and niche breadth in these hawthorns, for which phylogenetic relationships and ploidy levels are known. Species distribution data from herbarium specimens and online databases were analyzed in order to compare ranges and climate niches described by bioclimatic variables. Flow cytometry documented ploidy level and breeding system. Voucher specimens provided morphometric data that were analyzed using uni- and multivariate methods. Members of two black-fruited taxonomic sections of Crataegus subg. Sanguineae (sections Douglasianae, Salignae) have previously been identified as hybrids. They are presumptively self-fertile polyploids with pseudogamous gametophytic apomixis. Their morphologies, geographic ranges, and niche characteristics resemble those of their diploid, sexual parent or are intermediate between them and those of their other parent, one or both of two partially sympatric tetraploid apomicts in red-fruited C. subg. Americanae with much wider distributions. Comparing sections Douglasianae and Salignae suggests that geographic parthenogenesis (larger range sizes in apomicts, compared to sexually reproducing taxa) may have less to do with adaptation than it does with reproductive assurance in the pseudogamously apomictic and self-compatible hybrids. Greater climate niche breadth in allopolyploids compared to diploids similarly may be more due to parental traits than to effects of genome duplication per se.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2100
Author(s):  
Mariano Soliman ◽  
Marika Bocchini ◽  
Juliana Stein ◽  
Juan Pablo A. Ortiz ◽  
Emidio Albertini ◽  
...  

In angiosperms, gametophytic apomixis (clonal reproduction through seeds) is strongly associated with polyploidy and hybridization. The trait is facultative and its expressivity is highly variable between genotypes. Here, we used an F1 progeny derived from diploid apomictic (aposporic) genotypes of Paspalum rufum and two F2 families, derived from F1 hybrids with different apospory expressivity (%AES), to analyze the influence of the environment and the transgenerational transmission of the trait. In addition, AFLP markers were developed in the F1 population to identify genomic regions associated with the %AES. Cytoembryological analyses showed that the %AES was significantly influenced by different environments, but remained stable across the years. F1 and F2 progenies showed a wide range of %AES variation, but most hybrids were not significantly different from the parental genotypes. Maternal and paternal genetic linkage maps were built covering the ten expected linkage groups (LG). A single-marker analysis detected at least one region of 5.7 cM on LG3 that was significantly associated with apospory expressivity. Our results underline the importance of environmental influence in modulating apospory expressivity and identified a genomic region associated with apospory expressivity at the diploid level.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1449
Author(s):  
Mayelyn Mateo de Arias ◽  
Lei Gao ◽  
David A. Sherwood ◽  
Krishna K. Dwivedi ◽  
Bo J. Price ◽  
...  

In angiosperms, meiotic failure coupled with the formation of genetically unreduced gametophytes in ovules (apomeiosis) constitute major components of gametophytic apomixis. These aberrant developmental events are generally thought to be caused by mutation. However, efforts to locate the responsible mutations have failed. Herein, we tested a fundamentally different hypothesis: apomeiosis is a polyphenism of meiosis, with meiosis and apomeiosis being maintained by different states of metabolic homeostasis. Microarray analyses of ovules and pistils were used to differentiate meiotic from apomeiotic processes in Boechera (Brassicaceae). Genes associated with translation, cell division, epigenetic silencing, flowering, and meiosis characterized sexual Boechera (meiotic). In contrast, genes associated with stress responses, abscisic acid signaling, reactive oxygen species production, and stress attenuation mechanisms characterized apomictic Boechera (apomeiotic). We next tested whether these metabolic differences regulate reproductive mode. Apomeiosis switched to meiosis when premeiotic ovules of apomicts were cultured on media that increased oxidative stress. These treatments included drought, starvation, and H2O2 applications. In contrast, meiosis switched to apomeiosis when premeiotic pistils of sexual plants were cultured on media that relieved oxidative stress. These treatments included antioxidants, glucose, abscisic acid, fluridone, and 5-azacytidine. High-frequency apomeiosis was initiated in all sexual species tested: Brassicaceae, Boechera stricta, Boechera exilis, and Arabidopsis thaliana; Fabaceae, Vigna unguiculata; Asteraceae, Antennaria dioica. Unreduced gametophytes formed from ameiotic female and male sporocytes, first division restitution dyads, and nucellar cells. These results are consistent with modes of reproduction and types of apomixis, in natural apomicts, being regulated metabolically.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Viktorie Brožová ◽  
Petr Koutecký ◽  
Jiří Doležal

Abstract Gametophytic apomixis is a way of asexual plant reproduction by seeds. It should be advantageous under stressful high altitude or latitude environment where short growing seasons, low temperatures, low pollinator activity or unstable weather may hamper sexual reproduction. However, this hypothesis remains largely untested. Here, we assess the reproductive mode in 257 species belonging to 45 families from the world’s broadest alpine belt (2800–6150 m) in NW Himalayas using flow cytometric seed screen. We found only 12 apomictic species, including several members of Poaceae (Festuca, Poa and Stipa), Rosaceae (Potentilla) and Ranunculaceae (Halerpestes, Ranunculus), which are families typical for high apomict frequency. However, several apomictic species were newly discovered, including the first known apomictic species from the family Biebersteiniaceae (Biebersteinia odora), and first apomicts from the genera Stipa (Stipa splendens) and Halerpestes (Halerpestes lancifolia). Apomicts showed no preference for higher elevations, even in these extreme Himalayan alpine habitats. Additional trait-based analyses revealed that apomicts differed from sexuals in comprising more rhizomatous graminoids and forbs, higher soil moisture demands, sharing the syndrome of dominant species with broad geographical and elevation ranges typical for the late-successional habitats. Apomicts differ from non-apomicts in greater ability of clonal propagation and preference for wetter, more productive habitats.


2019 ◽  
Vol 10 ◽  
Author(s):  
Pankaj Kaushal ◽  
Krishna K. Dwivedi ◽  
Auji Radhakrishna ◽  
Manoj K. Srivastava ◽  
Vinay Kumar ◽  
...  

2014 ◽  
Vol 50 (1-2) ◽  
pp. 195-199 ◽  
Author(s):  
Sven Asker

Gametophytic apomixis implies different changes of the reproductive cycle of sexual plants. Each of these "elements of apomixis" occurs in sexual plants, which may even display functional diploid parthenogenesis. Thus, apomixis, like vegetative reproduction, is part of the reproductive behaviour of sexual plants, becoming important when sexual reproduction is impaired. The elements of apomixis are probably to a large extent under polygenic control.


Sign in / Sign up

Export Citation Format

Share Document