scholarly journals Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China

2018 ◽  
Vol 15 (17) ◽  
pp. 5329-5341 ◽  
Author(s):  
Jiguang Feng ◽  
Jingsheng Wang ◽  
Yanjun Song ◽  
Biao Zhu

Abstract. Soil respiration (Rs), a key process in the terrestrial carbon cycle, is very sensitive to climate change. In this study, we synthesized 54 measurements of annual Rs and 171 estimates of Q10 value (the temperature sensitivity of soil respiration) in grasslands across China. We quantitatively analyzed their spatial patterns and controlling factors in five grassland types, including temperate typical steppe, temperate meadow steppe, temperate desert steppe, alpine grassland, and warm, tropical grassland. Results showed that the mean (±SE) annual Rs was 582.0±57.9 g C m−2 yr−1 across Chinese grasslands. Annual Rs significantly differed among grassland types, and was positively correlated with mean annual temperature, mean annual precipitation, soil temperature, soil moisture, soil organic carbon content, and aboveground biomass, but negatively correlated with soil pH (p<0.05). Among these factors, mean annual precipitation was the primary factor controlling the variation of annual Rs among grassland types. Based on the overall data across Chinese grasslands, the Q10 values ranged from 1.03 to 8.13, with a mean (±SE) of 2.60±0.08. Moreover, the Q10 values varied largely within and among grassland types and soil temperature measurement depths. Among grassland types, the highest Q10 derived by soil temperature at a depth of 5 cm occurred in alpine grasslands. In addition, the seasonal variation of soil respiration in Chinese grasslands generally cannot be explained well by soil temperature using the van't Hoff equation. Overall, our findings suggest that the combined factors of soil temperature and moisture would better predict soil respiration in arid and semi-arid regions, highlight the importance of precipitation in controlling soil respiration in grasslands, and imply that alpine grasslands in China might release more carbon dioxide to the atmosphere under climate warming.

2018 ◽  
Author(s):  
Jiguang Feng ◽  
Jingsheng Wang ◽  
Yanjun Song ◽  
Biao Zhu

Abstract. Soil respiration (Rs), a key process in the terrestrial carbon cycle, is very sensitive to climate change. In this study, we synthesized 54 measurements of annual Rs and 171 estimates of Q10 value (the temperature sensitivity of soil respiration) in grasslands across China. We quantitatively analyzed their spatial patterns and controlling factors in five grassland types, including temperate typical steppe, temperate meadow steppe, temperate desert steppe, alpine grassland, and warm-tropical grassland. Results showed that the mean (± SE) annual Rs was 582.0 ± 57.9 g C m−2 yr−1 across Chinese grasslands. Annual Rs significantly differed among grassland types, and positively correlated with mean annual temperature, mean annual precipitation, soil organic carbon content and aboveground biomass, but negatively correlated with latitude and soil pH (P < 0.05). Among these factors, mean annual precipitation was the primary factor controlling the spatial variation of annual Rs in Chinese grasslands. The mean contributions of growing season Rs and heterotrophic respiration to annual Rs were 78.7 % and 72.8 %, respectively. Moreover, the mean (± SE) of Q10 across Chinese grasslands was 2.60 ± 0.08, ranging from 1.03 to 8.13, and varied largely within and among grassland types, and among soil temperature measurement depths. Generally, the seasonal variation of soil respiration in Chinese grasslands cannot be well explained by soil temperature using the van't Hoff equation. Longitude and altitude were the dominant driving factors and accounted for 26.0 % of the variation in Q10 derived by soil temperature at the depth of 5 cm. Overall, our findings advance our understanding of the spatial variation and environmental control of soil respiration and Q10 across Chinese grasslands, and also improve our ability to predict soil carbon efflux under climate change on the regional scale.


2020 ◽  
Author(s):  
Haoming Yu ◽  
Yunting Fang ◽  
Ronghua Kang

&lt;p&gt;N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; Emissions from soil in terrestrial ecosystems is a crucial component of the global nitrogen (N) cycle. The response of these two gases emissions from forest soil to temperature change and its underlying mechanisms are essential for predicting N cycle to global warming. Despite the warming-induced effects on soil N cycle is considered to be positive in general, our understanding of temperature sensitivity (Q&lt;sub&gt;10&lt;/sub&gt;) of N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; emissions is rather limited. We quantified the Q&lt;sub&gt;10&lt;/sub&gt; of N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; emissions in forest soils and explored their major driving factors by conducting an incubation experiment using &lt;sup&gt;15&lt;/sup&gt;N tracer (Na&lt;sup&gt;15&lt;/sup&gt;NO&lt;sub&gt;3&lt;/sub&gt;) with soil samples from nineteen forest sites from temperate to tropical zones. The environmental conditions largely varied: mean annual temperature (MAT) ranging from -5.4 to 21.5&lt;sup&gt;o&lt;/sup&gt;C and mean annual precipitation (MAP) ranging from 300 to 2449 mm. The soil pH varied between 3.62 to 6.38. We incubated soil samples under an anaerobic condition with temperature from 5 to 35&lt;sup&gt;o&lt;/sup&gt;C with an interval of 5&lt;sup&gt;o&lt;/sup&gt;C for 12 or 24 hours, respectively. Soil temperature strongly affected the production of N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt;.&amp;#160;N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; production rates showed a positive exponential relation with incubate time and temperature for all forest soils. Our results showed that the Q&lt;sub&gt;10&lt;/sub&gt; values ranged from 1.31 to 2.98 for N&lt;sub&gt;2&lt;/sub&gt;O emission and 1.69 to 3.83 for N&lt;sub&gt;2&lt;/sub&gt; emission, indicating a generally positive feedback of N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; production to warming. Higher Q&lt;sub&gt;10&lt;/sub&gt; values for N&lt;sub&gt;2&lt;/sub&gt; than N&lt;sub&gt;2&lt;/sub&gt;O implies that N&lt;sub&gt;2&lt;/sub&gt; emission is more sensitive to temperature increase. The N&lt;sub&gt;2&lt;/sub&gt;O/(N&lt;sub&gt;2&lt;/sub&gt;O+N&lt;sub&gt;2&lt;/sub&gt;) decreased with increasing temperature in fifteen of nineteen forest soils, suggesting that warming accelerates N&lt;sub&gt;2&lt;/sub&gt; emission. Strong spatial variation in Q&lt;sub&gt;10&lt;/sub&gt; were also observed, with tropical forest soils exhibiting high Q&lt;sub&gt;10&lt;/sub&gt; values and relatively low Q&lt;sub&gt;10&lt;/sub&gt; in temperate forest soils. This variation is attributed to the inherent differences in N biogeochemical cycling behavior between the microbial communities among sites. Despite soil temperature primarily controls the N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; emissions,&amp;#160;we &amp;#160;explored the effects of other factors such as pH, C/N, DOC and related functional genes. In addition, we partitioned N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; emissions to different microbial processes (e.g., denitrification, co-denitrification and anammox).&amp;#160;The results indicated that denitrification was the main pathway of N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; production under anaerobic environment and the contribution increased as temperature rise.&lt;/p&gt;&lt;p&gt;Key words: Temperature sensitivity, N&lt;sub&gt;2&lt;/sub&gt;O, N&lt;sub&gt;2&lt;/sub&gt;, Forest soil, Nitrogen cycle, Global warming, Denitrification&lt;/p&gt;


2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


2020 ◽  
Author(s):  
Lisa Zwanzig ◽  
Martin Zwanzig ◽  
Daniela Sauer

&lt;p&gt;Soil formation is controlled by climate, vegetation, organisms, topography, parent material and time. There are various hypotheses on the relative importance of these individual soil-forming factors. The quantitative influence of each soil-forming factor on the expression and rates of soil-forming processes, and in particular the influence of the different factors in combination, have not yet been sufficiently analyzed. The aim of this study was to quantify the influence of the soil-forming factors on the rates of podzolization. For this purpose, we compiled published data from 46 soil chronosequence studies in a database. These studies contained altogether 231 soil profiles of known age, on which we tested existing hypotheses on the influence of different soil-forming factors. The formation of an E horizon and its increase in thickness over time is one of the characteristic features of Podzol formation. As it is one of the few features that was described in all 46 studies, we used it as an indicator of progressive podzolization. Through statistical analysis, we investigated how E horizon thickness is affected by latitude, longitude, mean annual precipitation, mean annual temperature, range between minimum and maximum monthly temperature, annual number of days with frost, vegetation class (pioneer, deciduous and coniferous), sand content, clay content, and soil age.&lt;/p&gt;&lt;p&gt;Since E horizon thickness exhibited a zero-inflated (semi-)continuous distribution, we opted for a zero-altered gamma (ZAG) model, consisting of a Bernoulli and a Gamma part. The Bernoulli part shows, how the probability of the presence of an E horizon changes with soil age and environmental conditions. The Gamma part of the ZAG model allows for capturing the effects of the covariates on E horizon thickness. Our results indicate that vegetation is the most important factor for both (1) the soil age at which podzolization starts (used indicator: first occurrence of an E horizon), and (2) the rates of podzolization thereafter (used measure: increase of E horizon thickness with soil age). Climatic factors such as mean annual precipitation and range of temperature play subordinate roles. They are important for the soil age at which podzolization starts but less important for the rates of podzolization. We did not identify a significant influence of sand content, neither on the start nor the rates of podzolization. Thus, this statistical assessment of global data provides new insights into the relative importance of the individual soil-forming factors on the onset and temporal course of podzolization.&lt;/p&gt;


2013 ◽  
Vol 43 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Björn Berg ◽  
Chunjiang Liu ◽  
Ryszard Laskowski ◽  
Matthew Davey

Using literature data, we investigated coniferous and broadleaf litter from 58 tree species using a database encompassing concentrations of N and acid-unhydrolyzable residue (AUR) (gravimetric lignin) in newly shed litter, mean annual temperature, and mean annual precipitation. Our aims were to (i) demonstrate any large-scale relationships between concentrations of N and AUR in foliar litter and (ii) determine differences in this respect among litter from Pinus and Quercus. To this end, we had collected foliar litter data for Asia and Europe, forming a climate gradient. Litter from broadleaf and coniferous trees differed significantly in concentrations of N (p < 0.0001, 9.64 versus 5.50 mg/g, respectively) and AUR (p < 0.0001, 219 versus 292 mg/g, respectively). There were highly significant positive linear relationships between concentrations of N and AUR for broadleaf (p < 0.0001) and coniferous litter (p < 0.0001). There were also significant positive relationships for AUR as a function of N concentration for the genera Pinus and Quercus but not within species. That for Scots pine (Pinus sylvestris L.) was negative and that for common oak (Quercus robur L.) not significant.


Botany ◽  
2013 ◽  
Vol 91 (8) ◽  
pp. 514-529 ◽  
Author(s):  
Richard M. Dillhoff ◽  
Thomas A. Dillhoff ◽  
David R. Greenwood ◽  
Melanie L. DeVore ◽  
Kathleen B. Pigg

A flora from Thomas Ranch near Princeton, British Columbia, Canada, is assessed for biodiversity and paleoclimate. This latest Early to early Middle Eocene flora occurs in the Allenby Formation. Seventy-six megafossil morphotypes have been recognized, representing at least 62 species, with 29 identified to genus or species. Common taxa include Ginkgo L., Metasequoia Miki, Sequoia Endl., Abies Mill., Pinus L., Pseudolarix Gordon, Acer L., Alnus Mill., Betula L., Fagus L., Sassafras J Presl, Macginitiea Wolfe & Wehr, Prunus L., and Ulmus L. More than 70 pollen and spore types are recognized, 32 of which are assignable to family or genus. The microflora is dominated by conifers (85%–97% abundance), with Betulaceae accounting for most of the angiosperms. The Climate Leaf Analysis Multivariate Program (CLAMP) calculates a mean annual temperature (MAT) of 9.0 ± 1.7 °C and bioclimatic analysis (BA) calculates a MAT of 12.8 ± 2.5 °C. Coldest month mean temperature (CMMT) was >0 °C. Mean annual precipitation (MAP) was >70 cm/year but is estimated with high uncertainty. Both the CLAMP and BA estimates are at the low end of the MAT range previously published for other Okanagan Highland localities, indicating a temperate climate consistent with a mixed conifer–deciduous forest.


2021 ◽  
Vol 13 (12) ◽  
Author(s):  
Sara E. Rhodes ◽  
Nicholas J. Conard

AbstractEnsuring comparability between results is a key goal of all paleoecological reconstructions. Quantitative estimates of meteorological variables, as opposed to relative qualitative descriptions, provide the opportunity to compare local paleoenvironmental records against global estimates and incrementally build regional paleoclimatic records. The Bioclimatic Method provides quantitative and qualitative estimates of past landscape composition and climate along with measures of statistical accuracy by applying linear discriminant functions analysis and transfer functions to faunal taxonomic abundance data. By applying this method to the rodent data from Geißenklösterle and Hohle Fels, two Paleolithic cave sites located in the Ach Valley of southwestern Germany, we classify the regional vegetation according to Walters’ zonobiome model. We also present new estimates of meteorological variables including mean annual temperature, mean annual precipitation, and vegetative activity period of the Ach Valley for the period spanning ~ 60,000 to 35,000 cal BP. The results suggest the Ach Valley contained a non-analogous landscape of arctic tundra and temperate deciduous woodland with occasional arid steppe expansion. Meteorological estimates suggest the climate was significantly colder during the Middle and Upper Paleolithic than today, with higher annual precipitation and dramatic temperature shifts between seasons. These results fit well with climatic reconstructions from Switzerland and the Netherlands based on a variety of proxies. They also provide further evidence of a localized climatic response within southwestern Germany to the stadial-interstadial shifts preceding the Heinrich 4 event. Finally, these results reinforce our previous claims that climatic volatility was not a driving force in the loss of Neanderthal groups throughout the Swabian Jura during OIS 3.


2020 ◽  
Vol 47 (2) ◽  
pp. 418
Author(s):  
Juan M. Robledo ◽  
Maricel Y. Horn ◽  
Claudia I. Galli ◽  
Luisa M. Anzótegui

The continental sedimentary rocks that constitute the Palo Pintado Formation of the late Miocene from Salta province, presents a great paleoclimatic interest due to the environmental conditions prevailing during this geochronologic interval. The geological and paleobotanical data suggest that during the sedimentary rocks accumulation of the Palo Pintado Formation (Angastaco Basin), wetter conditions would have existed comparing with other nearby and contemporary Formations, for example the Playa del Zorro Aloformation (late Miocene of Catamarca) and the Chiquimil (late Miocene of Tucumán), Salicas and the Toro Negro Formations (both from the late Miocene of La Rioja). In this study, the margin and the foliar area of the leaves contained on rocks from the Palo Pintado Formation are analyzed, in order to obtain the mean annual temperature (MAT) and the mean annual precipitation (MAP). The resulting values were: 23.98 °C and 330.8 mm. These results are coincident by the interpretation of different authors, who consider that the Palo Pintado Formation would have been deposited under a relatively humid environment, possibly as a consequence of the rains that affected locally the Angastaco basin región.


Sign in / Sign up

Export Citation Format

Share Document