cholesterol supplementation
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Wan Yun Ho ◽  
Jer-Cherng Chang ◽  
Kenneth Lim ◽  
Amaury Cazenave-Gassiot ◽  
Aivi T. Nguyen ◽  
...  

Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43–mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies–related diseases.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A70-A70
Author(s):  
Kate Warde ◽  
Yi-Jan Lim ◽  
Felix Beuschlein ◽  
Constanze Hantel ◽  
Michael Conall Dennedy

Abstract Introduction: Adrenocortical Carcinoma (ACC) is a rare aggressive cancer which carries a poor prognosis. Adjuvant mitotane improves survival but is limited by poor response rates and resistance following tumour recurrence. Mitotane’s efficacy has been attributed to intracellular accumulation of toxic free cholesterol (FC) predominantly through inhibition of cholesterol storage through SOAT1. Yet SOAT1 specific inhibitors demonstrate inferior efficacy to mitotane in inducing ACC cell death. We hypothesize that mitotane’s efficacy to induce toxic FC accumulation in ACC cells is also mediated through enhanced breakdown of stored cholesterol within intracellular lipid droplets (LDs). Methodology: ATCC-H295R (mitotane sensitive) and MUC-1 (mitotane resistant) ACC cells were evaluated for neutral lipid content using BODIPY493/503 under baseline and cholesterol loaded conditions using Amnis ImageStream, additionally cells were treated with mitotane (H295R - 20, 40, 50µM; MUC1 - 50, 100, 200µM) for 6hr. Analysis of LDs using CE-BODIPY and FA-BODIPY identified cholesterol ester (CE) and triacylglycerol (TAG)-containing LDs, respectively. Lipid droplet-associated proteins (LDAPs) Perilipin (PLIN) 1–4 and hormone sensitive lipase (HSL) were evaluated using western blotting and PCR. Lipid uptake receptors; SRB1, LDLR, LRP1 and CD36 were measured by flow cytometry. Results: Mitotane treatment, within therapeutic range, decreased staining for LDs significantly in H295R. This was also reflected by decreased expression of LDAPs, PLIN1 and PLIN3. The decrease in H295R LDs was associated with increased activation of HSL (pHSL and LIPE). However, this effect was only evident in MUC-1 at supratherapeutic mitotane (200µM). H295R and MUC-1 demonstrated similar overall LD numbers at baseline and under cholesterol supplementation. Expression of PLIN3 was high in both cell lines, while PLIN1, PLIN2 and PLIN4 demonstrated distinct LD profiles in each. Investigation of LD content showed that H295R preferentially store CEs while MUC-1 store only TAG, irrespective of cholesterol-loading. Mitotane treatment significantly reduces both CE and TAG LDs in H295R and MUC-1. Expression of lipid uptake receptors also demonstrated significant variability between cell lines including SRB1 and LRP1. Conclusion: We highlight that lipolysis through LD breakdown and activation of HSL represents a putative additional mechanism for mitotane induced FC cytotoxicity in ACC. We also demonstrate significant differences in cholesterol handling and LDAPs between mitotane sensitive and mitotane resistant models, in particular, the absence of CE LDs in MUC-1. We therefore propose a mechanism of resistance to mitotane through absent CE storage. Further understanding of cholesterol and lipid handling in ACC offers novel therapeutic exploitation, especially in the setting of mitotane resistant disease.


2020 ◽  
Author(s):  
Kan Yaguchi ◽  
Kimino Sato ◽  
Koya Yoshizawa ◽  
Gabor Banhegyi ◽  
Eva Margittai ◽  
...  

AbstractThe somatic haploidy is unstable in diplontic animals, but cellular processes determining haploid stability remain elusive. Here, we found that inhibition of mevalonate pathway by pitavastatin, a widely used cholesterol-lowering drug, drastically destabilized the haploid state in HAP1 cells. Interestingly, cholesterol supplementation did not restore haploid stability in pitavastatin-treated cells, and cholesterol inhibitor U18666A did not phenocopy haploid destabilization. These results ruled out the involvement of cholesterol in haploid stability. Besides cholesterol perturbation, pitavastatin induced endoplasmic reticulum (ER) stress, the suppression of which by a chemical chaperon significantly restored haploid stability in pitavastatin-treated cells. Our data demonstrate the involvement of the mevalonate pathway in the stability of the haploid state in human somatic cells through managing ER stress, highlighting a novel link between ploidy and ER homeostatic control.


2020 ◽  
Vol 46 (1) ◽  
Author(s):  
Maurizio Delvecchio ◽  
Biagio Rapone ◽  
Simonetta Simonetti ◽  
Simona Fecarotta ◽  
Graziana De Carlo ◽  
...  

Abstract Background Smith-Lemli-Opitz syndrome (SLOS) is a rare genetic neurodevelopmental disorder caused by the defect in the 7-dehydrocholesterol reductase. This defect leads to the deficiency of cholesterol biosynthesis with accumulation of 7-dehydrocholesterol. Inhibitory factor 1 (IF1) is a well-known mitochondrial protein. Recently, it has been discovered in the human serum where it is reported to be involved in the HDL-cholesterol intake. Here we report the IF1 presence in the serum of two paediatric SLOS dizygotic twins treated with dietary cholesterol supplementation. Case presentation The patients showed a typical phenotype. They started dietary supplementation with cholesterol when 2 months old. The cholesterol intake was periodically titrated on the basis of weight increase and the twin 1 required a larger supplementation than the twin 2 during the follow-up. When 6.4-year-old, they underwent IF1 assay that was 7-fold increased in twin 2 compared to twin 1 (93.0 pg/ml vs 13.0 pg/ml, respectively). Conclusions We report, for the first time, the presence of circulating IF1 in the serum of SLOS patients, showing different levels among them. Our findings confirm that IF1 could be a novel research target in cholesterol-related disorders and also in SLOS, and could contribute to the general debate on IF1 as a new modulator of cholesterol levels.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yula Kaminsky-Kolesnikov ◽  
Einat Rauchbach ◽  
Diana Abu-Halaka ◽  
Michal Hahn ◽  
Carmen García-Ruiz ◽  
...  

Nonalcoholic steatohepatitis (NASH) is currently one of the most common liver diseases worldwide. The toxic effects of lipids and bile acids contribute to NASH. The regenerative pathway in response to damage to the liver includes activation of the inflammatory process and priming of hepatocytes to proliferate to restore tissue homeostasis. However, the effects of cholesterol on bile acid toxicity, inflammation, and fibrosis remain unknown. We have used two mouse models of bile acid toxicity to induce liver inflammation and fibrosis. A three-week study was conducted using wild-type mice receiving an atherogenic diet (1% (w/w) cholesterol and 0.5% (w/w) cholic acid) and its separate constituents. Mdr2-/- mice were fed a high-cholesterol-enriched diet or standard AIN-93 diet for 6 weeks. We measured serum transaminase levels to assess liver tissue necrosis and fibrosis; iNOS, SAA1, SAA2, and F4/80 levels to determine liver inflammation; PCNA and HGF levels to evaluate proliferative response; and Nrf-2, HIF-1α, and downstream gene expression to establish protective responses. In both studies, high bile acid levels increased serum transaminases and liver fibrosis, whereas cholesterol supplementation attenuated these effects. Cholesterol supplementation activated survival and the robustness of HIF-1α and Nrf-2 gene expression in hepatocytes, induced liver inflammation and hepatocyte proliferation, and inhibited stellate cell hyperplasia and fibrosis. In conclusion, our data show for the first time that cholesterol intake protects against bile acid liver toxicity. The balance between hepatic cholesterol and bile acid levels may be of prognostic value in liver disease progression and trajectory.


2019 ◽  
Vol 20 (19) ◽  
pp. 4767 ◽  
Author(s):  
Geon-Hee Kim ◽  
Sang-Yeon Kan ◽  
Hyeji Kang ◽  
Sujin Lee ◽  
Hyun Myung Ko ◽  
...  

Abnormally upregulated cholesterol and lipid metabolism, observed commonly in multiple cancer types, contributes to cancer development and progression through the activation of oncogenic growth signaling pathways. Although accumulating evidence has shown the preventive and therapeutic benefits of cholesterol-lowering drugs for cancer management, the development of cholesterol-lowering drugs is needed for treatment of cancer as well as metabolism-related chronic diseases. Ursolic acid (UA), a natural pentacyclic terpenoid, suppresses cancer growth and metastasis, but the precise underlying molecular mechanism for its anti-cancer effects is poorly understood. Here, using sterol regulatory element (SRE)-luciferase assay-based screening on a library of 502 natural compounds, this study found that UA activates sterol regulatory element-binding protein 2 (SREBP2). The expression of cholesterol biosynthesis-related genes and enzymes increased in UA-treated hepatocellular carcinoma (HCC) cells. The UA increased cell cycle arrest and apoptotic death in HCC cells and reduced the activation of oncogenic growth signaling factors, all of which was significantly reversed by cholesterol supplementation. As cholesterol supplementation successfully reversed UA-induced attenuation of growth in HCC cells, it indicated that UA suppresses HCC cells growth through its cholesterol-lowering effect. Overall, these results suggested that UA is a promising cholesterol-lowering nutraceutical for the prevention and treatment of patients with HCC and cholesterol-related chronic diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ana Cristina Doria dos Santos ◽  
Victor Hugo de Souza Marinho ◽  
Pedro Henrique de Aviz Silva ◽  
Barbarella de Matos Macchi ◽  
Mara Silvia Pinheiro Arruda ◽  
...  

Pathogenic species of mycobacteria are known to use the host cholesterol during lung infection as an alternative source of carbon and energy. Mycobacteria culture in minimal medium (MM) has been used as anin vitroexperimental model to study the consumption of exogenous cholesterol. Once in MM, different species of mycobacteria start to consume the cholesterol and initiate transcriptional and metabolic adaptations, upregulating the enzymes of the methylcitrate cycle (MCC) and accumulating a variety of primary metabolites that are known to be important substrates for cell wall biosynthesis. We hypothesized that stressful pressure of cultures in MM is able to induce critical adaptation for the bacteria which win the infection. To identify important modifications in the biosynthesis of the cell wall, we cultured the fast-growing and nonpathogenicMycobacterium smegmatisin MM supplemented with or without glycerol and/or cholesterol. Different from the culture in complete medium Middlebrook 7H9 broth, the bacteria when cultured in MM decreased growth and changed in the accumulation of cell wall molecules. However, the supplementation of MM with glycerol and/or cholesterol recovered the accumulation of phosphatidylinositol mannosides (PIMs) and other phospholipids but maintained growth deceleration. The biosynthesis of lipomannan (LM) and of lipoarabinomannan (LAM) was significantly modulated after culture in MM, independently of glycerol and/or cholesterol supplementation, where LM size was decreased (LM13-25KDa) and LAM increased (LAM37-100KDa), when compared these molecules after bacteria culture in complete medium (LM17-25KDaandLAM37-50KDa). These changes modified the cell surface hydrophobicity and susceptibility against H2O2. The infection of J774 macrophages withM. smegmatis,after culture in MM, induced the formation of granuloma-like structures, while supplementation with cholesterol induced the highest rate of formation of these structures. Taken together, our results identify critical changes in mycobacterial cell wall molecules after culture in MM that induces cholesterol accumulation, helping the mycobacteria to increase their capacity to form granuloma-like structures.


Author(s):  
Marta Valenza ◽  
Giulia Birolini ◽  
Eleonora Di Paolo ◽  
Elena Vezzoli ◽  
Claudia Maniezzi ◽  
...  

2018 ◽  
Vol 314 (2) ◽  
pp. H359-H369 ◽  
Author(s):  
Bojun Zhang ◽  
Jay S. Naik ◽  
Nikki L. Jernigan ◽  
Benjimen R. Walker ◽  
Thomas C. Resta

Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.


Sign in / Sign up

Export Citation Format

Share Document