stromal interaction molecule 1
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 15)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Rosita Stanzione ◽  
Maurizio Forte ◽  
Maria Cotugno ◽  
Franca Bianchi ◽  
Simona Marchitti ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yi-Ting Huang ◽  
Ya-Ting Hsu ◽  
Yih-Fung Chen ◽  
Meng-Ru Shen

Store-operated Ca2+ entry (SOCE) is an essential pathway for Ca2+ signaling, and regulates various vital cellular functions. It is triggered by the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1). Illustration of STIM1 spatiotemporal structure at the nanometer scale during SOCE activation provides structural and functional insights into the fundamental Ca2+ homeostasis. In this study, we used direct stochastic optical reconstruction microscopy (dSTORM) to revisit the dynamic process of the interaction between STIM1, end-binding protein (EB), and microtubules to the ER-plasma membrane. Using dSTORM, we found that“powder-like”STIM1 aggregates into “trabecular-like” architectures toward the cell periphery during SOCE, and that an intact microtubule network and EB1 are essential for STIM1 trafficking. After thapsigargin treatment, STIM1 can interact with EB1 regardless of undergoing aggregation. We generated STIM1 variants adapted from a real-world database and introduced them into SiHa cells to clarify the impact of STIM1 mutations on cancer cell behavior. The p.D76G and p.D84Y variants locating on the Ca2+ binding domain of STIM1 result in inhibition of focal adhesion turnover, Ca2+ influx during SOCE and subsequent cell migration. Inversely, the p.R643C variant on the microtubule interacting domain of STIM1 leads to dissimilar consequence and aggravates cell migration. These findings imply that STIM1 mutational patterns have an impact on cancer metastasis, and therefore could be either a prognostic marker or a novel therapeutic target to inhibit the malignant behavior of STIM1-mediated cancer cells. Altogether, we generated novel insight into the role of STIM1 during SOCE activation, and uncovered the impact of real-world STIM1 variants on cancer cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xianying Zhu ◽  
Yuan Zhan ◽  
Yiya Gu ◽  
Qian Huang ◽  
Ting Wang ◽  
...  

Chronic obstructive pulmonary disease (COPD), primarily attributed to cigarette smoke (CS), is characterized by multiple pathophysiological changes, including oxidative stress and inflammation. Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor that regulates Ca2+ entry in different types of cells. The present study aimed to explore the relationship between CS-induced oxidative stress and inflammation, as well as the functional role of STIM1 thereinto. Our results showed that the reactive oxygen species (ROS)/STIM1/Ca2+ axis played a critical role in CS-induced secretion of interleukin (IL)-8 in human alveolar macrophages. Specifically, smokers with COPD (SC) showed higher levels of ROS in the lung tissues compared with healthy non-smokers (HN). STIM1 was upregulated in the lung tissues of COPD patients. The expression of STIM1 was positively associated with ROS levels and negatively correlated with pulmonary function. The expression of STIM1 was also increased in the bronchoalveolar lavage fluid (BALF) macrophages of COPD patients and PMA-differentiated THP-1 macrophages stimulated by cigarette smoke extract (CSE). Additionally, CSE-induced upregulation of STIM1 in PMA-differentiated THP-1 macrophages was inhibited by pretreatment with N-acetylcysteine (NAC), a ROS scavenger. Transfection with small interfering RNA (siRNA) targeting STIM1 and pretreatment with NAC alleviated CSE-induced increase in intracellular Ca2+ levels and IL-8 expression. Furthermore, pretreatment with SKF-96365 and 2-APB, the inhibitors of Ca2+ influx, suppressed CSE-induced secretion of IL-8. In conclusion, our study demonstrates that CSE-induced ROS production may increase the expression of STIM1 in macrophages, which further promotes the release of IL-8 by regulating Ca2+ entry. These data suggest that STIM1 may play a crucial role in CSE-induced ROS production and inflammation, and participate in the pathogenesis of COPD.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1064
Author(s):  
Ji Hee Park ◽  
Seung Yeon Jeong ◽  
Jun Hee Choi ◽  
Eun Hui Lee

Stromal interaction molecule 1 (STIM1) is the main protein that, along with Orai1, mediates store-operated Ca2+ entry (SOCE) in skeletal muscle. Abnormal SOCE due to mutations in STIM1 is one of the causes of human skeletal muscle diseases. STIM1-R304Q (a constitutively active form of STIM1) has been found in human patients with skeletal muscle phenotypes such as muscle weakness, myalgia, muscle stiffness, and contracture. However, the pathological mechanism(s) of STIM1-R304Q in skeletal muscle have not been well studied. To examine the pathological mechanism(s) of STIM1-R304Q in skeletal muscle, STIM1-R304Q was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-myotube Ca2+ imaging, transmission electron microscopy (TEM), and biochemical approaches. STIM1-R304Q did not interfere with the terminal differentiation of skeletal myoblasts to myotubes and retained the ability of STIM1 to attenuate dihydropyridine receptor (DHPR) activity. STIM1-R304Q induced hyper-SOCE (that exceeded the SOCE by wild-type STIM1) by affecting both the amplitude and the onset rate of SOCE. Unlike that by wild-type STIM1, hyper-SOCE by STIM1-R304Q contributed to a disturbance in Ca2+ distribution between the cytosol and the sarcoplasmic reticulum (SR) (high Ca2+ in the cytosol and low Ca2+ in the SR). Moreover, the hyper-SOCE and the high cytosolic Ca2+ level induced by STIM1-R304Q involve changes in mitochondrial shape. Therefore, a series of these cellular defects induced by STIM1-R304Q could induce deleterious skeletal muscle phenotypes in human patients carrying STIM1-R304Q.


Author(s):  
Muhammad Yasir Asghar ◽  
Taru Lassila ◽  
Ilkka Paatero ◽  
Van Dien Nguyen ◽  
Pauliina Kronqvist ◽  
...  

AbstractStromal interaction molecule 1 (STIM1) and the ORAI1 calcium channel mediate store-operated calcium entry (SOCE) and regulate a multitude of cellular functions. The identity and function of these proteins in thyroid cancer remain elusive. We show that STIM1 and ORAI1 expression is elevated in thyroid cancer cell lines, compared to primary thyroid cells. Knock-down of STIM1 or ORAI1 attenuated SOCE, reduced invasion, and the expression of promigratory sphingosine 1-phosphate and vascular endothelial growth factor-2 receptors in thyroid cancer ML-1 cells. Cell proliferation was attenuated in these knock-down cells due to increased G1 phase of the cell cycle and enhanced expression of cyclin-dependent kinase inhibitory proteins p21 and p27. STIM1 protein was upregulated in thyroid cancer tissue, compared to normal tissue. Downregulation of STIM1 restored expression of thyroid stimulating hormone receptor, thyroid specific proteins and increased iodine uptake. STIM1 knockdown ML-1 cells were more susceptible to chemotherapeutic drugs, and significantly reduced tumor growth in Zebrafish. Furthermore, STIM1-siRNA-loaded mesoporous polydopamine nanoparticles attenuated invasion and proliferation of ML-1 cells. Taken together, our data suggest that STIM1 is a potential diagnostic and therapeutic target for treatment of thyroid cancer.


2021 ◽  
Author(s):  
Muhammad Yasir Asghar ◽  
Taru Lassila ◽  
Ilkka Paatero ◽  
Van Dien Nguyen ◽  
Pauliina Kronqvist ◽  
...  

Abstract Stromal interaction molecule 1 (STIM1) and the ORAI1 calcium channel mediate store-operated calcium entry (SOCE) and regulate a multitude of cellular functions. The identity and function of these proteins in thyroid cancer remained elusive. We show that STIM1 and ORAI1 expression is elevated in thyroid cancer cell lines, compared with primary thyroid cells. Knock-down of STIM1 or ORAI1 attenuated SOCE, reduced migration, and expression of promigratory sphingosine 1-phosphate (S1P) and vascular endothelial growth factor-2 (VEGFR2) receptors in thyroid cancer ML-1 cells. Cell proliferation was attenuated in these knock-down cells due to increased G1 phase of the cell cycle and enhanced expression of cyclin-dependent kinase inhibitory proteins p21 and p27. STIM1 protein was upregulated in thyroid cancer tissue, compared with normal tissue. Downregulation of STIM1 restored expression of thyroid stimulating hormone receptor (TSHR), thyroid specific proteins and increased iodine uptake. STIM1 knockdown ML-1 cells were more susceptible to chemotherapeutic drugs, and significantly reduced tumor growth in Zebrafish. Furthermore, STIM1-siRNA-loaded mesoporous polydopamine nanoparticles attenuated migration and proliferation of ML-1 cells. Taken together, our data suggest that STIM1 is a potential diagnostic and therapeutic target for treatment of thyroid cancer.


2020 ◽  
Vol 10 (4) ◽  
pp. 287
Author(s):  
Chi-Cheng Huang ◽  
Min-Rou Lin ◽  
Yu-Chen Yang ◽  
Yu-Wen Hsu ◽  
Henry Sung-Ching Wong ◽  
...  

Among all cancers in women, breast cancer has the highest incidence. The mortality of breast cancer is highly associated with metastasis. Migration and malignant transformation of cancer cells have been reported to be modulated by store-operated calcium (SOC) channels, which control calcium signaling and cell proliferation pathways. Stromal interaction molecule 1 (STIM1) is a calcium sensor in the endoplasmic reticulum, triggering the activation of store-operated calcium signaling. However, the clinical relevance of STIM1 in breast cancer is still unclear. Here, we recruited 348 breast cancer patients and conducted a genetic association study to address this question. Four tagging germline single nucleotide variants (SNVs) in STIM1 were selected and RNA sequencing data of 525 breast cancer samples from The Cancer Genome Atlas (TCGA) database were evaluated. The results show that rs2304891 and rs3750996 were correlated with clinical stage of breast cancer. Expression quantitative trait loci (eQTL) analysis indicated that risk G allele of STIM1 contributed to the higher expression of STIM1. In addition, we found an increased risk of rs2304891 G allele and rs3750996 A allele in estrogen receptor (ER) positive and progesterone receptor (PR) positive patients. In conclusion, our results suggest that germline SNV, rs2304891 and rs3750996 as well as STIM1 expression are important biomarkers for the prediction of clinical outcomes in breast cancer patients.


Genomics ◽  
2020 ◽  
Vol 112 (3) ◽  
pp. 2146-2153 ◽  
Author(s):  
Jian Tang ◽  
Shufang Ye ◽  
Mingqiao Wang ◽  
Jun Li ◽  
Xun Meng ◽  
...  

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Michaela Frost ◽  
Souad Belmadani ◽  
Khalid Matrougui

Sign in / Sign up

Export Citation Format

Share Document