oscillatory stretching surface
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 2)

2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 533-543 ◽  
Author(s):  
Khan Ullah ◽  
Nasir Ali ◽  
Zaheer Abbas

In this article, we have investigated thermal-diffusion and diffusion-thermo effects on unsteady flow of electrically conducting Eyring-Powell fluid over an oscillatory stretching sheet by using convective boundary conditions. A set of appropriate variables are used to reduce number of independent variables in governing equations. Series solution is computed using homotopy analysis method. The effects of various parameters of interest on the velocity filed, temperature profile, concentration profile, skin friction, local Nusselt number and local Sherwood number are illustrated graphically and discussed in detail.


2017 ◽  
Vol 1 (20) ◽  
pp. 87-100 ◽  
Author(s):  
Sami Ullah Khan ◽  
Nasir Ali

In the present work, we have studied an unsteady, two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) Oldroyd-B fluid over an oscillatory stretching surface. The problem is modeled by using constitutive equations. The number of independent variables in the governing equations are reduced by using appropriate dimensionless variables. The analytical solution is computed by using homotopy analysis method. The influences of various physical parameters such as Deborah numbers, ratio of angular frequency to stretching rate parameter and Hartmann number on time-series of velocity and transverse velocity profiles at different time instants are investigated and discussed quantitatively with the help of various graphs. It is observed that amplitude of velocity increases by increasing ratio of oscillating frequency to stretching rate parameter while decreases by increasing Hartmann number. It is further observed that the magnitude of velocity decreases by increasing Hartmann number and Deborah numbers in the terms of relaxation time parameter.


2015 ◽  
Vol 70 (7) ◽  
pp. 567-576 ◽  
Author(s):  
Nasir Ali ◽  
Sami Ullah Khan ◽  
Zaheer Abbas

AbstractThe flow and heat transfer of a Jeffrey fluid over an oscillatory stretching sheet is investigated using the boundary-layer approximations. The flow is induced due to infinite elastic sheet that is stretched periodically. The number of independent variables in the governing equations was reduced by using appropriate dimensionless variables. This dimensionless system has been solved by using the homotopy analysis method (HAM) and a finite difference scheme, in which a coordinate transformation was used to transform the semi-infinite physical space to a bounded computational domain. A comparison of both solutions is provided. The effects of involved parameters are illustrated through graphs and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document