scholarly journals Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis

2021 ◽  
Vol 12 ◽  
Author(s):  
Liping Wang ◽  
Zongze Shao

Bacteria of Halomonas are widely distributed in various environments and play a substantial role in the nutrient cycle. In this report, 14 strains capable of aerobic denitrification and heterotrophic sulfur oxidation were isolated from different habitats. Based on the phenotypic, genotypic, and chemotaxonomic analyses, these strains were considered to represent six novel species of the genus Halomonas, for which the names Halomonas zhangzhouensis sp. nov. type strain CXT3-11T ( = MCCC 1A11036T = KCTC 72087T), Halomonas aerodenitrificans sp. nov. CYD-9T ( = MCCC 1A11058T = KCTC 72088T), Halomonas sulfidoxydans sp. nov. CYN-1-2T ( = MCCC 1A11059T = KCTC 72089T), Halomonas ethanolica sp. nov. CYT3-1-1T ( = MCCC 1A11081T = KCTC 72090T), Halomonas sulfidivorans sp. nov. NLG_F1ET ( = MCCC 1A13718T = KCTC 72091T), and Halomonas tianxiuensis sp. nov. BC-M4-5T ( = MCCC 1A14433T = KCTC 72092T) are proposed. Intriguingly, they formed a unique group with 11 other species designated as the “H. desiderata group.” To better understand their featured metabolisms, genes involved in denitrification and sulfur oxidation were analyzed, along with 193 other available genomes of the whole genus. Consistently, complete denitrification pathways were confirmed in the “H. desiderata group,” in which napA, narG, nirS, norB, and nosZ genes coexist. Their nitrite reductase NirS formed a unique evolutionary lineage, distinguished from other denitrifiers in Halomonas. In addition, diverse occurrence patterns of denitrification genes were also observed in different phylogenetic clades of Halomonas. With respect to sulfur oxidation, fccAB genes involved in sulfide oxidation commonly exist in the “H. desiderata group,” while sqr genes are diverse and can be found in more species; sqr genes co-occurred with fccAB in eight strains of this study, contributing to more active sulfide oxidation. Besides, the tsdA gene, which encodes an enzyme that oxidizes thiosulfate to tetrathionate, is ubiquitous in the genus Halomonas. The widespread presence of sqr/fccAB, pdo, and tsdA in Halomonas suggests that many Halomonas spp. can act as heterotrophic sulfur oxidizers. These results provide comprehensive insights into the potential of denitrification and sulfur oxidation in the whole genus of Halomonas. With regard to the global distribution of Halomonas, this report implies their unneglectable role in the biogeochemical cycle.

2007 ◽  
Vol 57 (5) ◽  
pp. 1113-1116 ◽  
Author(s):  
François N. R. Renaud ◽  
Alain Le Coustumier ◽  
Nathalie Wilhem ◽  
Dominique Aubel ◽  
Philippe Riegel ◽  
...  

A novel strain, C-138T, belonging to the genus Corynebacterium was isolated from a severe thigh liposarcoma infection and its differentiation from Corynebacterium xerosis and Corynebacterium freneyi is described. Analysis of 16S rRNA gene sequences, rpoB sequences and the PCR profile of the 16S–23S spacer regions was not conclusive enough to differentiate strain C-138T from C. xerosis and C. freneyi. However, according to DNA–DNA hybridization data, strain C-138T constitutes a member of a distinct novel species. It can be differentiated from strains of C. xerosis and C. freneyi by colony morphology, the absence of α-glucosidase and some biochemical characteristics such as glucose fermentation at 42 °C and carbon assimilation substrates. The name Corynebacterium hansenii sp. nov. is proposed for this novel species; the type strain is C-138T (=CIP 108444T=CCUG 53252T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1466-1472 ◽  
Author(s):  
Laurie B. Connell ◽  
Regina Redman ◽  
Russel Rodriguez ◽  
Anne Barrett ◽  
Melissa Iszard ◽  
...  

During a survey of the culturable soil fungal population in samples collected in Taylor Valley, South Victoria Land, Antarctica, 13 basidiomycetous yeast strains with orange-coloured colonies were isolated. Phylogenetic analyses of internal transcribed spacer (ITS) and partial LSU rRNA gene sequences showed that the strains belong to the Dioszegia clade of the Tremellales (Tremellomycetes, Agaricomycotina), but did not correspond to any of the hitherto recognized species. Two novel species, Dioszegia antarctica sp. nov. (type strain ANT-03-116T =CBS 10920T =PYCC 5970T) and Dioszegia cryoxerica sp. nov. (type strain ANT-03-071T =CBS 10919T =PYCC 5967T), are described to accommodate ten and three of these strains, respectively. Analysis of ITS sequences demonstrated intrastrain sequence heterogeneity in D. cryoxerica. The latter species is also notable for producing true hyphae with clamp connections and haustoria. However, no sexual structures were observed. The two novel species can be considered obligate psychrophiles, since they failed to grow above 20 °C and grew best between 10 and 15 °C.


2011 ◽  
Vol 61 (9) ◽  
pp. 2167-2172 ◽  
Author(s):  
Qi-Yong Tang ◽  
Na Yang ◽  
Jian Wang ◽  
Yu-Qing Xie ◽  
Biao Ren ◽  
...  

A Gram-stain-positive, endospore-forming, rod-shaped bacterium, designated XJ259T, was isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region, China. The isolate grew optimally at 20–30 °C and pH 7.3–7.8. Comparative analysis of the 16S rRNA gene sequence showed that isolate XJ259T belonged phylogenetically to the genus Paenibacillus, and was most closely related to Paenibacillus xinjiangensis B538T (with 96.6 % sequence similarity), Paenibacillus glycanilyticus DS-1T (96.3 %) and Paenibacillus castaneae Ch-32T (96.1 %), sharing less than 96.0 % sequence similarity with all other members of the genus Paenibacillus. Chemotaxonomic analysis revealing menaquinone-7 (MK-7) as the major isoprenoid quinone, diphosphatidylglycerol, phosphatidylethanolamine and two unknown phosphoglycolipids as the major cellular polar lipids, a DNA G+C content of 47.0 mol%, and anteiso-C15 : 0 and C16 : 0 as the major fatty acids supported affiliation of the new isolate to the genus Paenibacillus. Based on these data, isolate XJ259T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus algorifonticola sp. nov. is proposed. The type strain is XJ259T ( = CGMCC 1.10223T  = JCM 16598T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1667-1674 ◽  
Author(s):  
Kelly P. Nevin ◽  
Dawn E. Holmes ◽  
Trevor L. Woodard ◽  
Erich S. Hinlein ◽  
David W. Ostendorf ◽  
...  

Fe(III)-reducing isolates were recovered from two aquifers in which Fe(III) reduction is known to be important. Strain BemT was enriched from subsurface sediments collected in Bemidji, MN, USA, near a site where Fe(III) reduction is important in aromatic hydrocarbon degradation. Strains P11, P35T and P39 were isolated from the groundwater of an aquifer in Plymouth, MA, USA, in which Fe(III) reduction is important because of long-term inputs of acetate as a highway de-icing agent to the subsurface. All four isolates were Gram-negative, slightly curved rods that grew best in freshwater media. Strains P11, P35T and P39 exhibited motility via means of monotrichous flagella. Analysis of the 16S rRNA and nifD genes indicated that all four strains are δ-proteobacteria and members of the Geobacter cluster of the Geobacteraceae. Differences in phenotypic and phylogenetic characteristics indicated that the four isolates represent two novel species within the genus Geobacter. All of the isolates coupled the oxidation of acetate to the reduction of Fe(III) [iron(III) citrate, amorphous iron(III) oxide, iron(III) pyrophosphate and iron(III) nitrilotriacetate]. All four strains utilized ethanol, lactate, malate, pyruvate and succinate as electron donors and malate and fumarate as electron acceptors. Strain BemT grew fastest at 30 °C, whereas strains P11, P35T and P39 grew equally well at 17, 22 and 30 °C. In addition, strains P11, P35T and P39 were capable of growth at 4 °C. The names Geobacter bemidjiensis sp. nov. (type strain BemT=ATCC BAA-1014T=DSM 16622T=JCM 12645T) and Geobacter psychrophilus sp. nov. (strains P11, P35T and P39; type strain P35T=ATCC BAA-1013T=DSM 16674T=JCM 12644T) are proposed.


2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


2004 ◽  
Vol 54 (6) ◽  
pp. 2343-2346 ◽  
Author(s):  
David P. Labeda ◽  
Reiner M. Kroppenstedt

A polyphasic taxonomic evaluation of presumptive strains representative of the genus Glycomyces held within the Agricultural Research Service Culture Collection resulted in the discovery of three novel species. Analysis of the whole cell sugar content of these novel species, as well as of two species presently assigned to the genus, revealed that the whole cell sugar pattern was different from that reported in the formal description of the genus Glycomyces. The sugars present in all strains studied included ribose, xylose, mannose and galactose rather than xylose and arabinose as reported in the original description of the genus. Moreover, the menaquinone patterns observed for the novel species also deviated from the original genus description. The formal description of the genus Glycomyces is emended to reflect these new data. The novel species proposed and described are Glycomyces algeriensis sp. nov. (type strain NRRL B-16327T=DSM 44727T), Glycomyces arizonensis sp. nov. (type strain NRRL B-16153T=DSM 44726T) and Glycomyces lechevalierae sp. nov. (type strain NRRL B-16149T=DSM 44724T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2151-2154 ◽  
Author(s):  
Sirapan Sukontasing ◽  
Somboon Tanasupawat ◽  
Somporn Moonmangmee ◽  
Jung-Sook Lee ◽  
Ken-ichiro Suzuki

A Gram-positive and catalase-negative coccus that formed chains, strain FP15-1T, isolated from fermented tea leaves (‘miang’), was studied systematically. The strain was facultatively anaerobic and produced l-lactic acid from glucose. Demethylmenaquinone (DMK-7) was the major menaquinone. Straight-chain unsaturated fatty acids C16 : 1 and C18 : 1 were the dominant components. The DNA G+C content was 37.8 mol%. On the basis of 16S rRNA and RNA polymerase α subunit (rpoA) gene sequence analysis, strain FP15-1T was closely related to Enterococcus italicus KCTC 5373T, with 99.2 and 93.8 % similarity, respectively. The strain could be clearly distinguished from E. italicus ATCC 5373T by low DNA–DNA relatedness (≤33.8 %) and phenotypic characteristics. Therefore, this strain represent a novel species of the genus Enterococcus, for which the name Enterococcus camelliae sp. nov. is proposed. The type strain is FP15-1T (=KCTC 13133T =NBRC 101868T =NRIC 0105T =TISTR 932T =PCU 277T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1811-1815 ◽  
Author(s):  
Min Tseng ◽  
Shu-Feng Yang ◽  
Wen-Jun Li ◽  
Cheng-Lin Jiang

An actinomycete strain (0345M-7T) was isolated from a soil sample from Yilan county, Taiwan. The isolate displayed substrate mycelia, upon which were borne short spore chains. The spore chains were composed of non-motile, smooth-surfaced, oval spores. Strain 0345M-7T had meso-diaminopimelic acid in its peptidoglycan. Whole-cell sugars were galactose, glucose, arabinose and ribose. The only phospholipid found was phosphatidylethanolamine. The predominant menaquinone was MK-9(H4). Mycolic acids were not detected. Major cellular fatty acids were iso-C16 : 0 (38.1 %) and C17 : 1 (25.4 %). The DNA G+C content of strain 0345M-7T was 68.9 mol%. On the basis of phenotypic and genotypic data, it is proposed that strain 0345M-7T (=BCRC 16802T=KCTC 19116T) should be classified as the type strain of a novel species of the genus Amycolatopsis, Amycolatopsis taiwanensis sp. nov.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3683-3689 ◽  
Author(s):  
Mie Johanne Hansen ◽  
Mira Strøm Braaten ◽  
Anders Miki Bojesen ◽  
Henrik Christensen ◽  
Christian Sonne ◽  
...  

Thirty-three suspected strains of the family Pasteurellaceae isolated from the oral cavity of polar and brown bears were characterized by genotypic and phenotypic tests. Phylogenetic analysis of partial 16S rRNA gene and rpoB sequences showed that the investigated isolates formed two closely related monophyletic groups, representing two novel species of a new genus. Based on 16S rRNA gene sequence comparison Bibersteinia trehalosi was the closest related species with a validly published name, with 95.4 % similarity to the polar bear group and 94.4 % similarity to the brown bear group. Otariodibacter oris was the closest related species based on rpoB sequence comparison with a similarity of 89.8 % with the polar bear group and 90 % with the brown bear group. The new genus could be separated from existing genera of the family Pasteurellaceae by three to ten phenotypic characters, and the two novel species could be separated from each other by two phenotypic characters. It is proposed that the strains should be classified as representatives of a new genus, Ursidibacter gen. nov., with two novel species: the type species Ursidibacter maritimus sp. nov., isolated from polar bears (type strain Pb43106T = CCUG 65144T = DSM 28137T, DNA G+C content 39.3 mol%), and Ursidibacter arcticus sp. nov., isolated from brown bears (type strain Bamse61T = CCUG 65145T = DSM 28138T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4410-4416 ◽  
Author(s):  
Soon Dong Lee

A novel actinobacterium, designated strain C4-31T, was isolated from soil collected from a cave. Cells were aerobic, Gram-reaction-positive, oxidase-negative, catalase-positive and non-motile cocci. Comparison of 16S rRNA gene sequences showed that the organism occupied a distinct phylogenetic position within the suborder Frankineae, with sequence similarity values of less than 93.2 % to members of this suborder. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major menaquinone was MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unknown aminophospholipid and an unknown phospholipid. The major fatty acids were iso-C16 : 0, C17 : 1ω6c and C16 : 0. The G+C content of the DNA was 62.8 mol%. On the basis of morphological and chemotaxonomic data as well as phylogenetic evidence, strain C4-31T ( = KCTC 39556T = DSM 100065T) is considered to represent the type strain of a novel species of a new genus in the suborder Frankineae, for which the name Antricoccus suffuscus gen. nov., sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document