tidal change
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
pp. 104642
Author(s):  
Ali Reza Payandeh ◽  
Dubravko Justic ◽  
Haosheng Huang ◽  
Giulio Mariotti ◽  
Scott C. Hagen

2021 ◽  
Vol 11 (23) ◽  
pp. 11460
Author(s):  
Alberto Fortelli ◽  
Alessandro Fedele ◽  
Giuseppe De Natale ◽  
Fabio Matano ◽  
Marco Sacchi ◽  
...  

The coastline of the Gulf of Naples, Italy, is characterized by a series of infrastructures of strategic importance, including touristic and commercial ports between Pozzuoli to Sorrento, main roads, railways, and urban areas. Furthermore, the Gulf of Naples hosts an intense traffic of touristic and commercial maritime routes. The risk associated with extreme marine events is hence very significant over this marine and coastal area. On 28 December 2020, the Gulf of Naples was hit by an extreme sea storm, with severe consequences. This study focuses on the waterfront area of Via Partenope, where the waves overrun the roadway, causing massive damage on coastal seawall, road edges, and touristic structures (primarily restaurants). Based on the analysis of the meteorological evolution of the sea storm and its effects on the waterfront, we suggest that reflective processes induced on the sea waves by the tuff cliffs at the base of Castel dell’Ovo had an impact in enhancing the local-scale waves magnitude. This caused in turn severe flooding of the roadway and produced widespread damage along the coast. The analysis of the event of 28 December 2020, also suggests the need of an effective mitigation policy in the management of coastal issues induced by extreme sea storm events. Wind-based analysis and prediction of the sea wave conditions are currently discussed in the literature; however, critical information on wave height is often missing or not sufficient for reliable forecasting. In order to improve our ability to forecast the effects of sea storm events on the coastline, it is necessary to analyze all the components of the coastal wave system, including wave diffraction and reflection phenomena and the tidal change. Our results suggest in fact that only an integrated approach to the analysis of all the physical and anthropic components of coastal system may provide a correct base of information for the stakeholders to address coastal zone planning and protection.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Richard Sima

A series of industry posters reimagines iconic locales in light of sea level rise and issues a call for action against climate change.


2021 ◽  
Author(s):  
Francesco De Leo ◽  
Stefan A. Talke

<p>Many locations in the U.S. have experienced large trends in their tidal range since the 19<sup>th</sup> century, often in response to altered coastal and estuarine morphology.  Such tidal changes may enhance the vulnerability of an area towards flooding. In this contribution, >1000 estimates of tidal range from around the contiguous United States are digitized from the published tide tables of 1899 and compared to the tide table of 2020. Our approach enables much greater spatial coverage than previous studies. Tidal range has more than doubled in many regions due to anthropogenic development, including Miami, the Saint Johns River, and the Connecticut River. Important changes are noted in other tidal rivers, including the Sacramento, Savannah, and James Rivers. On average, gauges located inland experienced the largest changes in tidal range, followed by estuary stations; coastal stations showed the least variability. Amplified tidal range increases the prevalence of minor (nuisance) flooding.  As shown by case studies of San Francisco, Wilmington (North Carolina) and Miami (Florida), the prevalence of minor (nuisance) flooding events has greatly increased due to tidal evolution. In locations without historical time-series, we infer the changed flooding using a statistical model that estimates changes to tidal constituents based on the observed change in tidal range and known constituent ratios.  Results show that tidal change may be a previously underappreciated factor in the increasing prevalence of nuisance flooding in cities like Miami and Jacksonville, Florida, where long time series of data back to the 19<sup>th</sup> century are not available.  Understanding the reasons for tidal change may provide planners and engineers with new tools to adapt to climate change effects like sea-level rise.</p>


2020 ◽  
Vol 12 (1) ◽  
pp. 148 ◽  
Author(s):  
Christopher Cathcart ◽  
John B. Shaw ◽  
Micheal Amos

Knowledge of the flow patterns within distributary systems is key for understanding deltaic hydro- and morpho-dynamics, yet synoptic measurements of flow fields remain virtually nonexistent. As a means of overcoming this problem, a small number of studies have used biogenic surface films as synoptic flow tracers, under the assumption that biofilm streaklines are tangent to the local flow direction. Here we rigorously test this assumption and show that, despite flow patterns that change severely in space and time (over a range >270°), streaklines are relatively accurate synoptic flow tracers for the Wax Lake Delta, in Louisiana. When the incoming discharge was greater than 2400 m3/s with stable or falling tides, the streakline-derived flow direction departed from near bed flow direction measurements of 22.8° (root mean square). When the discharge was greater than 2400 m3/s and the tides were rising greater than 0.03 m/hr, they were accurate within 28.0°. Under conditions of discharge less than 2400 m3/s and tidal change less than a positive 0.03 m/hr, they were accurate within 33.3°, while during low discharge and rising tides they were accurate within 58.9°. Accuracy varied with distance from the delta, with proximal sites having greater precision. Our results demonstrate that a streakline-derived flow direction can characterize the spatiotemporal variability in the flow directions, but that the accuracy is significantly influenced by the hydrodynamic conditions and location within the network.


2017 ◽  
Vol 35 (3) ◽  
pp. 547-565 ◽  
Author(s):  
Boris Strelnikov ◽  
Artur Szewczyk ◽  
Irina Strelnikova ◽  
Ralph Latteck ◽  
Gerd Baumgarten ◽  
...  

Abstract. In summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andøya Space Center (ACS) in northern Norway (69° N, 16° E). Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT) turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromsø. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, ε varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of ε agrees reasonably with rocket-borne measurements. In this way defined 〈εradar〉 value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The 〈εradar〉 value also shows 12 h and shorter (1 to a few hours) modulations resulting in one decade of variation in 〈εradar〉 magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work.


Sign in / Sign up

Export Citation Format

Share Document