intrusion layer
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 14 (9) ◽  
pp. 43-48
Author(s):  
Sunaryo .

The study was conducted with the objective to distinguish the presence of seawater intrusion layer or salt-water aquifer distribution along the data acquisition line at the locations. Data acquisition was conducted by using the Wenner-Schumberger configuration of geoelectrical resistivity. From this research, 4 lines and 4 points of vertical electrical sounding (VES) data for every line were obtained with the distance between electrode a as 10m. Based on the data processing, obtained depth up to 120m with the smallest resistivity value is 0.02Ωm and the largest is 6764.52Ωm. To make the distribution of resistivity values along the path line of the study, cross sections were made until a depth of 120m. Based on the cross-section, the low resistivity value (less than 1.5 Ωm) that interpreted as a seawater intrusion layer or salt water aquifer distribution is located at varying depths. There are intrusions for the SB1 cross section, there is an intrusion at a depth of 6m-7m as far as 10m, at a depth of 6m-8m as far as 10m for the SB2 cross section and at a depth of 22m - 26m as far as 25m for the SB3 cross section.


2021 ◽  
Vol 13 (1) ◽  
pp. 109-136
Author(s):  
Uta Passow ◽  
Edward B. Overton

The Deepwater Horizon oil spill was the largest, longest-lasting, and deepest oil accident to date in US waters. As oil and natural gas jetted from release points at 1,500-m depth in the northern Gulf of Mexico, entrainment of the surrounding ocean water into a buoyant plume, rich in soluble hydrocarbons and dispersed microdroplets of oil, created a deep (1,000-m) intrusion layer. Larger droplets of liquid oil rose to the surface, forming a slick of mostly insoluble, hydrocarbon-type compounds. A variety of physical, chemical, and biological mechanisms helped to transform, remove, and redisperse the oil and gas that was released. Biodegradation removed up to 60% of the oil in the intrusion layer but was less efficient in the surface slick, due to nutrient limitation. Photochemical processes altered up to 50% (by mass) of the floating oil. The surface oil expression changed daily due to wind and currents, whereas the intrusion layer flowed southwestward. A portion of the weathered surface oil stranded along shorelines. Oil from both surface and intrusion layers were deposited onto the seafloor via sinking marine oil snow. The biodegradation rates of stranded or sedimented oil were low, with resuspension and redistribution transiently increasing biodegradation. The subsequent research efforts increased our understanding of the fate of spilled oil immensely, with novel insights focusing on the importance of photooxidation, the microbial communities driving biodegradation, and the formation of marine oil snow that transports oil to the seafloor.


2019 ◽  
Vol 219 (3) ◽  
pp. 1491-1513 ◽  
Author(s):  
C S Ogden ◽  
I D Bastow ◽  
A Gilligan ◽  
S Rondenay

SUMMARY H–κ stacking is used routinely to infer crustal thickness and bulk-crustal VP/VS ratio from teleseismic receiver functions. The method assumes that the largest amplitude P-to-S conversions beneath the seismograph station are generated at the Moho. This is reasonable where the crust is simple and the Moho marks a relatively abrupt transition from crust to mantle, but not if the crust–mantle transition is gradational and/or complex intracrustal structure exists. We demonstrate via synthetic seismogram analysis that H–κ results can be strongly dependent on the choice of stacking parameters (the relative weights assigned to the Moho P-to-S conversion and its subsequent reverberations, the choice of linear or phase-weighted stacking, input crustal P-wave velocity) and associated data parameters (receiver function frequency content and the sample of receiver functions analysed). To address this parameter sensitivity issue, we develop an H–κ approach in which cluster analysis selects a final solution from 1000 individual H–κ results, each calculated using randomly selected receiver functions, and H–κ input parameters. 10 quality control criteria that variously assess the final numerical result, the receiver function data set, and the extent to which the results are tightly clustered, are used to assess the reliability of H–κ stacking at a station. Analysis of synthetic data sets indicates H–κ works reliably when the Moho is sharp and intracrustal structure is lacking but is less successful when the Moho is gradational. Limiting the frequency content of receiver functions can improve the H–κ solutions in such settings, provided intracrustal structure is simple. In cratonic Canada, India and Australia, H–κ solutions generally cluster tightly, indicative of simple crust and a sharp Moho. In contrast, on the Ethiopian plateau, where Palaeogene flood-basalts overlie marine sediments, H–κ results are unstable and erroneous. For stations that lie on thinner flood-basalt outcrops, and/or in regions where Blue Nile river incision has eroded through to the sediments below, limiting the receiver function frequency content to longer periods improves the H–κ solution and reveals a 6–10 km gradational Moho, readily interpreted as a lower crustal intrusion layer at the base of a mafic (VP/VS = 1.77–1.87) crust. Moving off the flood-basalt province, H–κ results are reliable and the crust is thinner and more felsic (VP/VS = 1.70–1.77), indicating the lower crustal intrusion layer is confined to the region covered by flood-basaltic volcanism. Analysis of data from other tectonically complex settings (e.g. Japan, Cyprus) shows H–κ stacking results should be treated cautiously. Only in regions of relatively simple crust can H–κ stacking analysis be considered truly reliable.


2016 ◽  
Vol 16 (14) ◽  
pp. 8791-8815 ◽  
Author(s):  
Thomas Trickl ◽  
Hannes Vogelmann ◽  
Andreas Fix ◽  
Andreas Schäfler ◽  
Martin Wirth ◽  
...  

Abstract. A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison). The measurements were carried out at four observational sites: Payerne (Switzerland), Bilthoven (the Netherlands), Lindenberg (north-eastern Germany), and the Zugspitze mountain (Garmisch-Partenkichen, German Alps), and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg). The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014) that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The trajectories qualitatively explain the temporal evolution of the intrusion layers above the four stations participating in the campaign.


2016 ◽  
Author(s):  
Thomas Trickl ◽  
Hannes Vogelmann ◽  
Andreas Fix ◽  
Andreas Schäfler ◽  
Martin Wirth ◽  
...  

Abstract. A large-scale comparison of water-vapour vertical-sounding instruments took place over Central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison). The measurements were carried out at four observational sites, Payerne (Switzerland), Bilthoven (The Netherlands), Lindenberg (North-East Germany) and the Zugspitze mountain (Garmisch-Partenkichen, German Alps), and by an air-borne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with minimum mixing ratios of 0 to 65 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg). The dryness hardens the findings of a preceding study (“Part 1”) that, e.g., 73 % of deep intrusions reaching the German Alps and travelling six days and less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the the source region were transferred to Central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow the stratosphere from just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The trajectories qualitatively explain the temporal evolution of the intrusion layers above the four stations participating in the campaign.


2016 ◽  
Vol 105 (1) ◽  
pp. 110-119 ◽  
Author(s):  
A.T. Melvin ◽  
L.J. Thibodeaux ◽  
A.R. Parsons ◽  
E. Overton ◽  
K.T. Valsaraj ◽  
...  

2007 ◽  
Vol 37 (4) ◽  
pp. 819-836 ◽  
Author(s):  
Silvia Matt ◽  
William E. Johns

Abstract The Red Sea outflow exhibits strong seasonal variability in outflow transport due to effects of monsoon winds and seasonal fluctuations in buoyancy forcing. As it descends the continental slope in the western Gulf of Aden, it entrains significantly less-dense near-surface water, which itself varies on seasonal time scales. High-resolution hydrographic and direct velocity data collected during the 2001 Red Sea Outflow Experiment (REDSOX) are used herein to characterize and quantify the pathways of the Red Sea Outflow Water (RSOW) and the associated entrainment of Gulf of Aden Water. The outflow transport exhibits a maximum in winter of about 0.29 Sv (Sv ≡ 106 m3 s−1) at the exit of the Bab-el-Mandeb and approximately doubles to 0.56 Sv as it descends into the Gulf of Aden and entrains ambient water. In summer, the outflow is much weaker, reaching about 0.06 Sv at the strait and about 0.18 Sv downstream. The outflow plume divides into three distinct branches in winter, consisting of descending branches along two bathymetrically confined channels (the “Northern” and “Southern” channels, respectively), and an adjusted intrusion layer at shallower depths in the water column. Estimates of transport of “pure” Red Sea Outflow Water through salt flux conservation show the general partitioning of the outflow between the individual plumes, where the Northern Channel (NC) accounts for 52% of Red Sea Outflow Water, the Southern Channel (SC) carries 31%, and the intrusion layer (IL) the remaining 17%. The results also indicate that the transport of Red Sea Outflow Water is subject to considerable synoptic temporal variability that is unresolved by the present study.


2006 ◽  
Vol 17 (5) ◽  
pp. 577-595 ◽  
Author(s):  
LAWRENCE K. FORBES ◽  
GRAEME C. HOCKING

The propagation of a solitary wave in a horizontal fluid layer is studied. There is an interfacial free surface above and below this intrusion layer, which is moving at constant speed through a stationary density-stratified fluid system. A weakly nonlinear asymptotic theory is presented, leading to a Korteweg–de Vries equation in which the two fluid interfaces move oppositely. The intrusion layer solitary wave system thus forms a widening bulge that propagates without change of form. These results are confirmed and extended by a fully nonlinear solution, in which a boundary-integral formulation is used to solve the problem numerically. Limiting profiles are approached, for which a corner forms at the crest of the solitary wave, on one or both of the interfaces.


2006 ◽  
Vol 17 (5) ◽  
pp. 557-575 ◽  
Author(s):  
LAWRENCE K. FORBES ◽  
GRAEME C. HOCKING ◽  
DUNCAN E. FARROW

Waves on a neutrally buoyant intrusion layer moving into otherwise stationary fluid are studied. There are two interfacial free surfaces, above and below the moving layer, and a train of waves is present. A small amplitude linearized theory shows that there are two different flow types, in which the two interfaces are either in phase or else move oppositely. The former flow type occurs at high phase speed and the latter is a low-speed solution. Nonlinear solutions are computed for large amplitude waves, using a spectral type numerical method. They extend the results of the linearized analysis, and reveal the presence of limiting flow types in some circumstances.


Sign in / Sign up

Export Citation Format

Share Document