scholarly journals Protein world and hemochiralty

2021 ◽  
Author(s):  
Wan-Chung Hu

Protein world hypothesis and the origin of homochiralty are described. By using enzyme catalyzing itself, L-amino acid can replicate. L-amino acid also catalyze D-sugar production. By using Ramachandran plot, L-amino acid is favored for generating right alpha helix and beta sheet. Thus, homochiralty of earth happened.

Author(s):  
Kenji Ikehara

All life on Earth uses three integrated molecular systems in which genetic information contained in DNA base sequences is transmitted to ribosomes by RNA and a genetic code, then translated into the amino acid sequences of structural and catalytic proteins. Therefore, the most important point for understanding the origin of life is to determine how such systems could emerge from random processes on the early Earth. In this review, two alternatives are compared: the RNA world hypothesis and the [GADV]-protein world hypothesis. [GADV] refers to four amino acids, Gly [G], Ala [A], Asp [D] and Val [V] that are conserved in the amino acid sequences of many common proteins. Here I will argue that the origins of the three primary processes required for life to begin can be better explained by the GADV hypothesis than the RNA world hypothesis. The GADV hypothesis also incorporates a conversion process by which random polymers can evolve into proteins with ordered sequences.


2001 ◽  
Vol 75 (10) ◽  
pp. 4673-4680 ◽  
Author(s):  
Suzette A. Priola ◽  
Joëlle Chabry ◽  
Kaman Chan

ABSTRACT In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that the generation of mouse PrP-res was strongly influenced by homology between PrP-sen and PrP-res at amino acid residue 138, a residue located in a region of loop structure common to PrP molecules from many different species. In order to determine if homology at residue 138 also affected the formation of PrP-res in a different animal species, we assayed the ability of hamster PrP-res to convert a panel of recombinant PrP-sen molecules to protease-resistant PrP in a cell-free conversion system. Homology at amino acid residue 138 was not critical for the formation of protease-resistant hamster PrP. Rather, homology between PrP-sen and hamster PrP-res at amino acid residue 155 determined the efficiency of formation of a protease-resistant product induced by hamster PrP-res. Structurally, residue 155 resides in a turn at the end of the first alpha helix in hamster PrP-sen; this feature is not present in mouse PrP-sen. Thus, our data suggest that PrP-res molecules isolated from scrapie-infected brains of different animal species have different PrP-sen structural requirements for the efficient formation of protease-resistant PrP.


Biochemistry ◽  
1992 ◽  
Vol 31 (25) ◽  
pp. 5728-5733 ◽  
Author(s):  
Akira Shibata ◽  
Miharu Yamamoto ◽  
Takuya Yamashita ◽  
Jang Shing Chiou ◽  
Hiroshi Kamaya ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Doris C. Niño-Gómez ◽  
Claudia M. Rivera-Hoyos ◽  
Edwin D. Morales-Álvarez ◽  
Edgar A. Reyes-Montaño ◽  
Nury E. Vargas-Alejo ◽  
...  

Phytases are used for feeding monogastric animals, because they hydrolyze phytic acid generating inorganic phosphate. Aspergillus niger 3-phytase A (PDB: 3K4Q) and 3-phytase B (PDB: 1QFX) were characterized using bioinformatic tools. Results showed that both enzymes have highly conserved catalytic pockets, supporting their classification as histidine acid phosphatases. 2D structures consist of 43% alpha-helix, 12% beta-sheet, and 45% others and 38% alpha-helix, 12% beta-sheet, and 50% others, respectively, and pI 4.94 and 4.60, aliphatic index 72.25 and 70.26 and average hydrophobicity of −0,304 and −0.330, respectively, suggesting aqueous media interaction. Glycosylation and glycation sites allowed detecting zones that can affect folding and biological activity, suggesting fragmentation. Docking showed that H59 and H63 act as nucleophiles and that D339 and D319 are proton donor residues. MW of 3K4Q (48.84 kDa) and 1QFX (50.78 kDa) is similar; 1QFX forms homodimers which will originate homotetramers with several catalytic center accessible to the ligand. 3K4Q is less stable (instability index 45.41) than 1QFX (instability index 33.66), but the estimated lifespan for 3K4Q is superior. Van der Waals interactions generate hydrogen bonds between the active center and O2 or H of the phytic acid phosphate groups, providing greater stability to these temporal molecular interactions.


2012 ◽  
Vol 213 (24) ◽  
pp. 2628-2638 ◽  
Author(s):  
Qianjie Zhang ◽  
Bernd M. Liebeck ◽  
Kelu Yan ◽  
Dan E. Demco ◽  
Andrea Körner ◽  
...  
Keyword(s):  

2006 ◽  
Vol 361 (1474) ◽  
pp. 1751-1760 ◽  
Author(s):  
William R Taylor

The RNA world hypothesis requires a ribozyme that was an RNA-directed RNA polymerase (ribopolymerase). If such a replicase makes a reverse complementary copy of any sequence (including itself), in a simple RNA world, there is no mechanism to prevent self-hybridization. It is proposed that this can be avoided through the synthesis of a parallel complementary copy. The logical consequences of this are pursued and developed in a computer simulation, where the behaviour of the parallel copy is compared to the conventional reverse complementary copy. It is found that the parallel copy is more efficient at higher temperatures (up to 90°C). A model for the ribopolymerase, based on the core of the large subunit (LSU) of the ribosome, is described. The geometry of a potential active site for this ribopolymerase suggests that it contained a cavity (now occupied by the aminoacyl-tRNA) and that an amino acid binding in this might have ‘poisoned’ the ribopolymerase by cross-reacting with the nucleoside-triphosphate before polymerization could occur. Based on a similarity to the active site components of the class-I tRNA synthetase enzymes, it is proposed that the amino acid could become attached to the nascent RNA transcript producing a variety of aminoacylated tRNA-like products. Using base-pairing interactions, some of these molecules might cross-link two ribopolymerases, giving rise to a precursor of the modern ribosome. A hybrid dimer, half polymerase and half proto-ribosome, could account for mRNA translocation before the advent of protein elongation factors.


1993 ◽  
Vol 13 (1) ◽  
pp. 123-132
Author(s):  
A D Sharrocks ◽  
H Gille ◽  
P E Shaw

The serum response factor (p67SRF) binds to a palindromic sequence in the c-fos serum response element (SRE). A second protein, p62TCF binds in conjunction with p67SRF to form a ternary complex, and it is through this complex that growth factor-induced transcriptional activation of c-fos is thought to take place. A 90-amino-acid peptide, coreSRF, is capable for dimerizing, binding DNA, and recruiting p62TCF. By using extensive site-directed mutagenesis we have investigated the role of individual coreSRF amino acids in DNA binding. Mutant phenotypes were defined by gel retardation and cross-linking analyses. Our results have identified residues essential for either DNA binding or dimerization. Three essential basic amino acids whose conservative mutation severely reduced DNA binding were identified. Evidence which is consistent with these residues being on the face of a DNA binding alpha-helix is presented. A phenylalanine residue and a hexameric hydrophobic box are identified as essential for dimerization. The amino acid phasing is consistent with the dimerization interface being presented as a continuous region on a beta-strand. A putative second alpha-helix acts as a linker between these two regions. This study indicates that p67SRF is a member of a protein family which, in common with many DNA binding proteins, utilize an alpha-helix for DNA binding. However, this alpha-helix is contained within a novel domain structure.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2046
Author(s):  
Dimas A. M. Zaia ◽  
Cássia Thaïs B. V. Zaia

The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids), and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of available amino acids and other molecules? What were the peptides of prebiotic Earth made up of? How were these peptides synthesized? Minerals have been considered for this task, since they can preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the chiral selection of them. However, until now, this problem has only been studied in compartmentalized experiments. There are separate experiments showing that minerals preconcentrate amino acids by adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic Earth obtained by Zaia, several experiments are suggested. The main goal of these experiments is to show that using minerals it is possible, at least, to obtain peptides whose composition includes a high quantity of L-amino acids and protein amino acids (PAAs). These experiments should be performed using hydrothermal environments and wet/dry cycles. In addition, for hydrothermal environment experiments, it is very important to use one of the suggested artificial seawaters, and for wet/dry environments, it is important to perform the experiments in distilled water and diluted salt solutions. Finally, from these experiments, we suggest that, without an RNA world or even a pre genetic world, a small peptide set could emerge that better resembles modern proteins.


1995 ◽  
Vol 15 (1) ◽  
pp. 358-364 ◽  
Author(s):  
S R Green ◽  
L Manche ◽  
M B Mathews

The RNA-binding domain of the protein kinase DAI, the double-stranded RNA inhibitor of translation, contains two repeats of a motif that is also found in a number of other RNA-binding proteins. This motif consists of 67 amino acid residues and is predicted to contain a positively charged alpha helix at its C terminus. We have analyzed the effects of equivalent single amino acid changes in three conserved residues distributed over each copy of the motif. Mutants in the C-terminal portion of either repeat were severely defective, indicating that both copies of the motif are essential for RNA binding. Changes in the N-terminal and central parts of the motif were more debilitating if they were made in the first motif than in the second, suggesting that the first motif is the more important for RNA binding and that the second motif is structurally more flexible. When the second motif was replaced by a duplicate of the first motif, the ectopic copy retained its greater sensitivity to mutation, implying that the two motifs have distinct functions with respect to the process of RNA binding. Furthermore, the mutations have the same effect on the binding of double-stranded RNA and VA RNA, consistent with the existence of a single RNA-binding domain for both activating and inhibitory RNAs.


Sign in / Sign up

Export Citation Format

Share Document