scholarly journals Histone H3K27 methylation perturbs transcriptional robustness and underpins dispensability of highly conserved genes in fungi

2021 ◽  
Author(s):  
Sabina Moser Tralamazza ◽  
Leen Nachira Abraham ◽  
Benedito Correa ◽  
Daniel Croll

Epigenetic modifications are key regulators of gene expression and underpin genome integrity. Yet, how epigenetic changes affect the evolution and transcriptional robustness of genes remains largely unknown. Here, we show how the repressive histone mark H3K27me3 influences the trajectory of highly conserved genes in fungi. We first performed transcriptomic profiling on closely related species of the plant pathogen Fusarium graminearum species complex. We determined transcriptional responsiveness of genes across environmental conditions to determine expression robustness. To infer evolutionary conservation of coding sequences, we used a comparative genomics framework of 23 species across the Fusarium genus. We integrated histone methylation data from three Fusarium species across the phylogenetic breadth of the genus. Gene expression variation is negatively correlated with gene conservation confirming that highly conserved genes show higher expression robustness. Furthermore, we show that highly conserved genes marked by H3K27me3 deviate from the typical housekeeping gene archetype. Compared to the genomic background, H3K27me3 marked genes encode smaller proteins, exhibit lower GC content, weaker codon usage bias, higher levels of hydrophobicity and are enriched for functions related to regulation and membrane transport. The evolutionary age of conserved genes with H3K27me3 histone marks falls typically within the origins of the Fusarium genus. We show that highly conserved genes marked by H3K27me3 are more likely to be dispensable for survival. Lastly, we show that conserved genes exposed to repressive H3K27me3 marks across distantly related fungi predict transcriptional perturbation at the microevolutionary scale in Fusarium fungi. In conclusion, we establish how repressive histone marks determine the evolutionary fate of highly conserved genes across evolutionary timescales.

2018 ◽  
Vol 19 (7) ◽  
pp. 2064 ◽  
Author(s):  
Mingliang Jiang ◽  
Xiangshu Dong ◽  
Hong Lang ◽  
Wenxing Pang ◽  
Zongxiang Zhan ◽  
...  

Orphan genes, also called lineage-specific genes (LSGs), are important for responses to biotic and abiotic stresses, and are associated with lineage-specific structures and biological functions. To date, there have been no studies investigating gene number, gene features, or gene expression patterns of orphan genes in Brassica rapa. In this study, 1540 Brassica-specific genes (BSGs) and 1824 Cruciferae-specific genes (CSGs) were identified based on the genome of Brassica rapa. The genic features analysis indicated that BSGs and CSGs possessed a lower percentage of multi-exon genes, higher GC content, and shorter gene length than evolutionary-conserved genes (ECGs). In addition, five types of BSGs were obtained and 145 out of 529 real A subgenome-specific BSGs were verified by PCR in 51 species. In silico and semi-qPCR, gene expression analysis of BSGs suggested that BSGs are expressed in various tissue and can be induced by Plasmodiophora brassicae. Moreover, an A/C subgenome-specific BSG, BSGs1, was specifically expressed during the heading stage, indicating that the gene might be associated with leafy head formation. Our results provide valuable biological information for studying the molecular function of BSGs for Brassica-specific phenotypes and biotic stress in B. rapa.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Haithem Barbour ◽  
Salima Daou ◽  
Michael Hendzel ◽  
El Bachir Affar

AbstractHistone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed.


2021 ◽  
Author(s):  
◽  
Sivarajan Karunanithi

In the last two decades, our understanding of human gene regulation has improved tremendously. There are plentiful computational methods which focus on integrative data analysis of humans, and model organisms, like mouse and drosophila. However, these tools are not directly employable by researchers working on non-model organisms to answer fundamental biological, and evolutionary questions. We aimed to develop new tools, and adapt existing software for the analysis of transcriptomic and epigenomic data of one such non-model organism, Paramecium tetraurelia, an unicellular eukaryote. Paramecium contains two diploid (2n) germline micronuclei (MIC) and a polyploid (800n) somatic macronuclei (MAC). The transcriptomic and epigenomic regulatory landscape of the MAC genome, which has 80% protein-coding genes and short intergenic regions, is poorly understood. We developed a generic automated eukaryotic short interfering RNA (siRNA) analysis tool, called RAPID. Our tool captures diverse siRNA characteristics from small RNA sequencing data and provides easily navigable visualisations. We also introduced a normalisation technique to facilitate comparison of multiple siRNA-based gene knockdown studies. Further, we developed a pipeline to characterise novel genome-wide endogenous short interfering RNAs (endo-siRNAs). In contrary to many organisms, we found that the endo-siRNAs are not acting in cis, to silence their parent mRNA. We also predicted phasing of siRNAs, which are regulated by the RNA interference (RNAi) pathway. Further, using RAPID, we investigated the aberrations of endo-siRNAs, and their respective transcriptomic alterations caused by an RNAi pathway triggered by feeding small RNAs against a target gene. We find that the small RNA transcriptome is altered, even if a gene unrelated to RNAi pathway is targeted. This is important in the context of investigations of genetically modified organisms (GMOs). We suggest that future studies need to distinguish transcriptomic changes caused by RNAi inducing techniques and actual regulatory changes. Subsequently, we adapted existing epigenomics analysis tools to conduct the first comprehensive epigenomic characterisation of nucleosome positioning and histone modifications of the Paramecium MAC. We identified well positioned nucleosomes shifted downstream of the transcription start site. GC content seems to dictate, in cis, the positioning of nucleosomes, histone marks (H3K4me3, H3K9ac, and H3K27me3), and Pol II in the AT-rich Paramecium genome. We employed a chromatin state segmentation approach, on nucleosomes and histone marks, which revealed genes with active, repressive, and bivalent chromatin states. Further, we constructed a regulatory association network of all the aforementioned data, using the sparse partial correlation network technique. Our analysis revealed subsets of genes, whose expression is positively associated with H3K27me3, different to the otherwise reported negative association with gene expression in many other organisms. Further, we developed a Random Forests classifier to predict gene expression using genic (gene length, intron frequency, etc.) and epigenetic features. Our model has a test performance (PR-AUC) of 0.83. Upon evaluating different feature sets, we found that genic features are as predictive, of gene expression, as the epigenetic features. We used Shapley local feature explanation values, to suggest that high H3K4me3, high intron frequency, low gene length, high sRNA, and high GC content are the most important elements for determining gene expression status. In this thesis, we developed novel tools, and employed several bioinformatics and machine learning methods to characterise the regulatory landscape of the Paramecium’s (epi)genome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wanlu Liu ◽  
Javier Gallego-Bartolomé ◽  
Yuxing Zhou ◽  
Zhenhui Zhong ◽  
Ming Wang ◽  
...  

AbstractThe ability to target epigenetic marks like DNA methylation to specific loci is important in both basic research and in crop plant engineering. However, heritability of targeted DNA methylation, how it impacts gene expression, and which epigenetic features are required for proper establishment are mostly unknown. Here, we show that targeting the CG-specific methyltransferase M.SssI with an artificial zinc finger protein can establish heritable CG methylation and silencing of a targeted locus in Arabidopsis. In addition, we observe highly heritable widespread ectopic CG methylation mainly over euchromatic regions. This hypermethylation shows little effect on transcription while it triggers a mild but significant reduction in the accumulation of H2A.Z and H3K27me3. Moreover, ectopic methylation occurs preferentially at less open chromatin that lacks positive histone marks. These results outline general principles of the heritability and interaction of CG methylation with other epigenomic features that should help guide future efforts to engineer epigenomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kim Hoa Ho ◽  
Annarita Patrizi

AbstractChoroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.


Thorax ◽  
2001 ◽  
Vol 56 (7) ◽  
pp. 541-548
Author(s):  
E M Glare ◽  
M Divjak ◽  
M J Bailey ◽  
E H Walters

BACKGROUNDAsthma has been described as an eosinophilic bronchitis driven by interleukin(IL)-4 and IL-5. The quantification of cytokine mRNA levels in airway samples has been confounded by housekeeping gene expression which differs between and within asthmatics and controls.METHODSThe usefulness of competitive reverse transcriptase-polymerase chain reaction (RT-PCR) that is independent of housekeeping gene expression for quantitating the mRNA for interferon (IFN)γ, IL-2, IL-5, IL-4 and its receptor antagonist encoding splicing variant IL-4δ2 was determined in a cross sectional study of 45 normal control subjects and 111 with asthma.RESULTSAtopic controls and atopic asthmatic subjects expressed more IL-5 than non-atopic controls (p<0.02) in bronchoalveolar lavage (BAL) cells, but not in biopsy specimens. IL-5 mRNA expression in BAL cells from asthmatic subjects using inhaled corticosteroids (ICS) was significantly lower than those not receiving ICS (p=0.04). IL-2 mRNA levels differed with steroid use in biopsy specimens but not in BAL cells. IFNγ, IL-4, and IL-4δ2 mRNA levels did not differ between any groups and were not affected by steroid use. IL-4 and IL-4δ2 mRNA levels were positively correlated (p<0.0001), suggesting coordinated transcription.CONCLUSIONSWhile the signal differentiation of competitive PCR in asthma may rival that of in situ hybridisation and immunohistochemistry, the method is expensive and wasteful of material.


2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Sarah Wilson ◽  
Tianli Zhu ◽  
Rajesh Khanna ◽  
Michael Pritz

AbstractGene expression was investigated in the major brain subdivisions (telencephalon, diencephalon, midbrain and hindbrain) in a representative reptile, Alligator mississipiensis, during the later stages of embryonic development. The following genes were examined: voltage-gated sodium channel isoforms: NaV1.1 and NaV1.2; synaptic vesicle 2a (SV2a); synaptophysin; and calbindin 2. With the exception of synaptophysin, which was only expressed in the telencephalon, all genes were expressed in all brain regions sampled at the time periods examined. For NaV1.1, gene expression varied according to brain area sampled. When compared with NaV1.1, the pattern of NaV1.2 gene expression differed appreciably. The gene expression of SV2a was the most robust of any of the genes examined. Of the other genes examined, although differences were noted, no statistically significant changes were found either between brain part or time interval. Although limited, the present analysis is the first quantitative mRNA gene expression study in any reptile during development. Together with future experiments of a similar nature, the present gene expression results should determine which genes are expressed in major brain areas at which times during development in Alligator. When compared with other amniotes, these results will prove useful for determining how gene expression during development influences adult brain structure.


2016 ◽  
Vol 311 (6) ◽  
pp. L1245-L1258 ◽  
Author(s):  
Isaac K. Sundar ◽  
Irfan Rahman

Chromatin-modifying enzymes mediate DNA methylation and histone modifications on recruitment to specific target gene loci in response to various stimuli. The key enzymes that regulate chromatin accessibility for maintenance of modifications in DNA and histones, and for modulation of gene expression patterns in response to cigarette smoke (CS), are not known. We hypothesize that CS exposure alters the gene expression patterns of chromatin-modifying enzymes, which then affects multiple downstream pathways involved in the response to CS. We have, therefore, analyzed chromatin-modifying enzyme profiles and validated by quantitative real-time PCR (qPCR). We also performed immunoblot analysis of targeted histone marks in C57BL/6J mice exposed to acute and subchronic CS, and of lungs from nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). We found a significant increase in expression of several chromatin modification enzymes, including DNA methyltransferases, histone acetyltransferases, histone methyltransferases, and SET domain proteins, histone kinases, and ubiquitinases. Our qPCR validation data revealed a significant downregulation of Dnmt1, Dnmt3a, Dnmt3b, Hdac2, Hdac4, Hat1, Prmt1, and Aurkb. We identified targeted chromatin histone marks (H3K56ac and H4K12ac), which are induced by CS. Thus CS-induced genotoxic stress differentially affects the expression of epigenetic modulators that regulate transcription of target genes via DNA methylation and site-specific histone modifications. This may have implications in devising epigenetic-based therapies for COPD and lung cancer.


Sign in / Sign up

Export Citation Format

Share Document