scholarly journals The Use of Low-Profile Angular-Stability Plates in a “Nutcracker” Tarsal Navicular Fracture Combined with a Cuboid Fracture: ORIF Experience

2021 ◽  
Vol 6 (4) ◽  
pp. 99
Author(s):  
Fabrizio Quattrini ◽  
Corrado Ciatti ◽  
Serena Gattoni ◽  
Calogero Puma Pagliarello ◽  
Francesco Ceccarelli ◽  
...  

Background: Clear recommendations about the optimal treatment of traumatic tarsal navicular fractures are still very debated in the literature, and this is due to several factors: navicular fractures are rare and often misdiagnosed injuries, they are frequently associated with other fractures or a dislocation of the midfoot, and the current knowledge is based on few papers mainly considering a limited number of cases and dealing with different therapeutic approaches. The treatment of navicular body fractures is controversial and burdened by a high incidence of complications; in particular, Sangeorzan type III comminuted fractures represent a real challenge for the orthopedic surgeon. An accurate preoperative planning, a scrupulous surgical technique aimed at restoring volume and bony anatomy, and the use of low-profile angular-stability plates can lead to optimal clinical and functional results, decreasing the chances of arthritic evolution of mid-foot joints.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 723
Author(s):  
Hafid Ait-Oufella ◽  
Jean-Rémi Lavillegrand ◽  
Alain Tedgui

Experimental studies have provided strong evidence that chronic inflammation triggered by the sub-endothelial accumulation of cholesterol-rich lipoproteins in arteries is essential in the initiation and progression of atherosclerosis. Recent clinical trials highlighting the efficacy of anti-inflammatory therapies in coronary patients have confirmed that this is also true in humans Monocytes/macrophages are central cells in the atherosclerotic process, but adaptive immunity, through B and T lymphocytes, as well as dendritic cells, also modulates the progression of the disease. Analysis of the role of different T cell subpopulations in murine models of atherosclerosis identified effector Th1 cells as proatherogenic, whereas regulatory T cells (Tregs) have been shown to protect against atherosclerosis. For these reasons, better understanding of how Tregs influence the atherosclerotic process is believed to provide novel Treg-targeted therapies to combat atherosclerosis. This review article summarizes current knowledge about the role of Tregs in atherosclerosis and discusses ways to enhance their function as novel immunomodulatory therapeutic approaches against cardiovascular disease.


2009 ◽  
Vol 133 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Laura Barisoni ◽  
H. William Schnaper ◽  
Jeffrey B. Kopp

AbstractContext.—Etiologic factors and pathways leading to altered podocyte phenotype are clearly numerous and involve the activity of different cellular function.Objective.—To focus on recent discoveries in podocyte biology and genetics and their relevance to these human glomerular diseases, named podocytopathies.Data Sources.—Genetic mutations in genes encoding for proteins in the nucleus, slit diaphragm, podocyte cytoplasm, and cell membrane are responsible for podocyte phenotype and functional abnormalities. Podocyte injury may also derive from secondary stimuli, such as mechanical stress, infections, or use of certain medications. Podocytes can respond to injury in a limited number of ways, which include (1) effacement, (2) apoptosis, (3) arrest of development, and (4) dedifferentiation. Each of these pathways results in a specific glomerular morphology: minimal change nephropathy, focal segmental glomerulosclerosis, diffuse mesangial sclerosis, and collapsing glomerulopathy.Conclusions.—Based on current knowledge of podocyte biology, we organized etiologic factors and morphologic features in a taxonomy of podocytopathies, which provides a novel approach to the classification of these diseases. Current and experimental therapeutic approaches are also discussed.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zain Ul Abidin ◽  
Qunsheng Cao ◽  
Gulab Shah ◽  
Zaheer Ahmed Dayo ◽  
Muhammad Ejaz

Abstract In this paper, a miniaturized bandstop frequency selective surface (FSS) with high angular stability is presented. Each FSS element consists of four sets each consisting eight octagonal concentric interconnected loops. The four sets are connected with each other through outermost octagonal loop. The unit size is miniaturized to 0.066 λ0 at the resonant frequency of 1.79 GHz. The proposed configuration achieves excellent angular stability (only 0.025 GHz resonant frequency deviation is observed upto 83° oblique angles). The working mechanism of FSS is explained with the help of equivalent circuit model (ECM), electric field distribution, and corresponding surface current distribution. A prototype of the designed bandstop FSS is fabricated to verify the simulated frequency response. The experimental results are consistent with the simulation results. Simple geometry, low profile, high angular stability, and compact cell size are prominent features of the proposed structure.


2021 ◽  
pp. 10-12
Author(s):  
Anurag Rathore ◽  
Garvita Solanki

BACKGROUND: This prospective clinical study was performed to evaluate the efcacy and functional outcome in proximal humeral fractures following surgery with locking plates. MATERIAL & METHODS: from August 2013 to April 2015, 32 patients were enrolled in this study following exclusion and inclusion criteria. The evaluation parameters included Time taken for fracture union, functional scores, radiographs of the shoulder and ROM (Range of motion- exion, abduction, internal and external rotation etc.). Patients were followed up regularly at 6 weeks, 12 weeks, 24 weeks and 12 months. Functional results were evaluated using Neer's score. All data were collected and analyzed with the help of suitable statistical parameters. RESULTS: The nal results were evaluated by using NEER'S Score. In our study, the minimum score was 65 and maximum was 94. The average score was 83.9 (Mean ± S.D. : 83.875 ± 6.73). We had excellent results in 6(18.75%) patients, 19(59.375%) had satisfactory results, 7(21.875%) patients had unsatisfactory results but none of the case is failure in our study. CONCLUSION: Open reduction and internal xation with Locking Compression Plates, has given good results and it is the implant of choice now-a-days particularly in comminuted fractures and in osteoporotic bones in elderly patients.


2018 ◽  
Vol 11 (4) ◽  
pp. 107 ◽  
Author(s):  
Enikő Balogh ◽  
György Paragh ◽  
Viktória Jeney

Bone homeostasis is a complex process, wherein osteoclasts resorb bone and osteoblasts produce new bone tissue. For the maintenance of skeletal integrity, this sequence has to be tightly regulated and orchestrated. Iron overload as well as iron deficiency disrupt the delicate balance between bone destruction and production, via influencing osteoclast and osteoblast differentiation as well as activity. Iron overload as well as iron deficiency are accompanied by weakened bones, suggesting that balanced bone homeostasis requires optimal—not too low, not too high—iron levels. The goal of this review is to summarize our current knowledge about how imbalanced iron influence skeletal health. Better understanding of this complex process may help the development of novel therapeutic approaches to deal with the pathologic effects of altered iron levels on bone.


2019 ◽  
Vol 70 (3) ◽  
pp. 160-172
Author(s):  
Bensu Karahalil ◽  
Sevgi Yardım-Akaydin ◽  
Sultan Nacak Baytas

AbstractThe entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.


2008 ◽  
Vol 2 (1) ◽  
pp. 133-136 ◽  
Author(s):  
N Escudero-Castaño ◽  
M.A Perea-García ◽  
J Campo-Trapero ◽  
Cano Sánchez ◽  
A Bascones-Martínez

Background.The oral an perioral piercing has a long history as part of religious, tribal,cultural or sexual symbolism and nowdays there is a high incidence of oral and perioral piercing in the adolescent population. This practice has a long history as part of religious, tribal, cultural or sexual symbolism. This article reviews current knowledge on injuries or diseases that might be produced by piercing in the oral cavity. We propose a classification to diagnosed the pathologies related to oral an perioral piercingMethods.A search was conducted of articles in PubMed, Scielo published between 1997 and 2007, using the key words ``oral and perioral, piercing ´´, ``oral, piercing and disease”, ``recessions and oral piercing´´. It has reviewed about twentythree articles 17 were narrative reviews and 6 case seriesResults.A review was carried out on the origins of oral and perioral body piercing and its local implications, classifying the different alterations like recessions, systemic implications that it can produce in the oral and perioral cavity.Conclusion.Patients with oral and perioral piercing should be regularly followed up because of the possible development of different types of adverse effects.Clinical implications.Adverse effects of oral and perioral piercing can be systemic, with transmission of infectious diseases such as hepatitis B or C, or can be local, with alteration of oral mucosae or even of dental structures.


2021 ◽  
Vol 66 (2) ◽  
pp. 263-279
Author(s):  
D. V. Karpenko ◽  
N. A. Petinati ◽  
N. J. Drize ◽  
A. E. Bigildeev

Introduction. Current knowledge of tumour biology attests a dual genetic and epigenetic nature of cancer cell abnormalities. Tumour epigenetics research provided insights into the key pathways mediating oncogenesis and facilitated novel epigenetic therapies.Aim — an overview of intricate involvement of epigenetic change in haematological morbidity and current therapeutic approaches to target the related mechanisms.Main findings. We review the best known epigenetic marks in tumour cells, e.g. DNA cytosine methylation, methylation and acetylation of histone proteins, the underlying enzymatic machinery and its role in oncogenesis. The epigenetic profile-changing drugs are described, including DNA hypomethylating agents, histone deacetylase and methylase inhibitors. A particular focus is made on substances currently approved in haematological therapy or undergoing clinical trial phases for future clinical availability.


Author(s):  
Edward Hookway ◽  
Nicholas Athanasou ◽  
Udo Oppermann

Epigenetics is a term that refers to a collection of diverse mechanisms that are important in both the control of gene expression and the transmission of this information during cell division. Epigenetic processes are deranged in many cancers, leading to a combination of inappropriate silencing of tumour suppressor genes and overexpression of oncogenes. In this chapter, the molecular mechanisms that underpin the major epigenetic processes of DNA methylation, histone modification, and non-coding RNAs will be described in both their normal physiological roles and in the context of cancer. The challenge of understanding the complexity of the interactions between different epigenetic mechanisms and the limitations of our current knowledge will be highlighted. Therapeutic approaches towards targeting deranged epigenetic processes will also be described, such as the use of small molecule inhibitors of histone deacetylases.


2020 ◽  
Vol 21 (17) ◽  
pp. 6421
Author(s):  
Eduardo Pena ◽  
Julio Brito ◽  
Samia El Alam ◽  
Patricia Siques

High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypoxia condition (HIF-1α). On the other hand, recent therapeutic approaches have focused on abolishing hypoxia-induced RVH and RHF via attenuation of oxidative stress and inflammatory (IL-1β, MCP-1, SDF-1 and CXCR-4) pathways through phytotherapy and pharmacological trials. Nevertheless, further studies are necessary.


Sign in / Sign up

Export Citation Format

Share Document