human telencephalon
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Lin Ma ◽  
Yanhua Du ◽  
Yi Hui ◽  
Nan Li ◽  
Beibei Fan ◽  
...  

2021 ◽  
Author(s):  
David A. Menassa ◽  
Tim A. O. Muntslag ◽  
Maria Martin-Estebane ◽  
Liam Barry-Carroll ◽  
Mark A. Chapman ◽  
...  

Microglia, the brain's resident macrophages, shape neural development and wiring, and are key neuroimmune hubs in the pathological signature of neurodevelopmental disorders. In the human brain, microglial development has not been carefully examined yet, and most of our knowledge derives from rodents. We established an unprecedented collection of 97 post-mortem tissues enabling quantitative, sex-matched, detailed analysis of microglia across the human lifespan. We identify the dynamics of these cells in the human telencephalon, describing novel waves in microglial density across gestation and infancy, controlled by a balance of proliferation and apoptosis, which track key neurodevelopmental milestones. These profound changes in microglia are also observed in bulk RNAseq and single-cell RNAseq datasets. This study provides unparalleled insight and detail into the spatiotemporal dynamics of microglia across the human lifespan. Our findings serve as a solid foundation for elucidating how microglia contribute to shaping neurodevelopment in humans.


Cell ◽  
2020 ◽  
Vol 182 (3) ◽  
pp. 754-769.e18 ◽  
Author(s):  
Eirene Markenscoff-Papadimitriou ◽  
Sean Whalen ◽  
Pawel Przytycki ◽  
Reuben Thomas ◽  
Fadya Binyameen ◽  
...  

2019 ◽  
Author(s):  
Eirene Markenscoff-Papadimitriou ◽  
Sean Whalen ◽  
Pawel Przytycki ◽  
Reuben Thomas ◽  
Fadya Binyameen ◽  
...  

AbstractGene expression differs between cell types and regions within complex tissues such as the developing brain. To discover regulatory elements underlying this specificity, we generated genome-wide maps of chromatin accessibility in eleven anatomically-defined regions of the developing human telencephalon, including upper and deep layers of the prefrontal cortex. We predicted a subset of open chromatin regions (18%) that are most likely to be active enhancers, many of which are dynamic with 26% differing between early and late mid-gestation and 28% present in only one brain region. These region-specific predicted regulatory elements (pREs) are enriched proximal to genes with expression differences across regions and developmental stages and harbor distinct sequence motifs that suggest potential upstream regulators of regional and temporal transcription. We leverage this atlas to identify regulators of genes associated with autism spectrum disorder (ASD) including an enhancer of BCL11A, validated in mouse, and two functional de novo mutations in individuals with ASD in an enhancer of SLC6A1, validated in neuroblastoma cells. These applications demonstrate the utility of this atlas for decoding neurodevelopmental gene regulation in health and disease.SummaryTo discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from eleven dissected regions of the mid-gestation human telencephalon, including upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed regional differences in chromatin accessibility, including many specific to one brain region, and were correlated with gene expression differences across the same regions and gestational ages. pREs allowed us to map neurodevelopmental disorder risk genes to developing telencephalic regions, and we identified three functional de novo noncoding variants in pREs that alter enhancer function. In addition, transgenic experiments in mouse validated enhancer activity for a pRE proximal to BCL11A, showing how this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.


2019 ◽  
Author(s):  
Nicola Micali ◽  
Suel-Kee Kim ◽  
Marcelo Diaz-Bustamante ◽  
Genevieve Stein-O’Brien ◽  
Seungmae Seo ◽  
...  

SUMMARYBetter understanding the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here we used RNA-sequencing, cell imaging and lineage tracing of mouse and human in vitro NSCs to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs developed from pluripotency in vitro, they first transitioned through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines varied in these early patterning states leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analysis of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon.


2018 ◽  
Vol 76 ◽  
pp. 3-14 ◽  
Author(s):  
Gavin J. Clowry ◽  
Ayman Alzu’bi ◽  
Lauren F. Harkin ◽  
Subrot Sarma ◽  
Janet Kerwin ◽  
...  
Keyword(s):  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2927 ◽  
Author(s):  
Rafaela C. Sartore ◽  
Simone C. Cardoso ◽  
Yury V.M. Lages ◽  
Julia M. Paraguassu ◽  
Mariana P. Stelling ◽  
...  

Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon developmentin vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.


2016 ◽  
Author(s):  
Rafaela C Sartore ◽  
Simone C Cardoso ◽  
Yuri V Lages ◽  
Julia M Paraguassu ◽  
Rodrigo F Madeiro da Costa ◽  
...  

Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development. In the present work, we exposed cerebral organoids derived from human pluripotent stem cells to synchrotron radiation in order to measure how biologically valuable micronutrients are incorporated and distributed in the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves calcium, iron, phosphorus, potassium, sulfur, and zinc. Local trends in concentrations suggest a switch from passive to actively mediated transport across cell membranes. Finally, correlational analysis for pairs of elements shows spatially conserved patterns, suggesting they may physically associate, be stored in similar compartments or used in related biological processes. These findings might reflect which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.


Sign in / Sign up

Export Citation Format

Share Document