temporal dispersal
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nena Bollen ◽  
Maria Artesi ◽  
Keith Durkin ◽  
Samuel L. Hong ◽  
Barney Potter ◽  
...  

AbstractAt the end of 2020, several new variants of SARS-CoV-2—designated variants of concern—were detected and quickly suspected to be associated with a higher transmissibility and possible escape of vaccine-induced immunity. In Belgium, this discovery has motivated the initiation of a more ambitious genomic surveillance program, which is drastically increasing the number of SARS-CoV-2 genomes to analyse for monitoring the circulation of viral lineages and variants of concern. In order to efficiently analyse the massive collection of genomic data that are the result of such increased sequencing efforts, streamlined analytical strategies are crucial. In this study, we illustrate how to efficiently map the spatio-temporal dispersal of target mutations at a regional level. As a proof of concept, we focus on the Belgian province of Liège that has been consistently sampled throughout 2020, but was also one of the main epicenters of the second European epidemic wave. Specifically, we employ a recently developed phylogeographic workflow to infer the regional dispersal history of viral lineages associated with three specific mutations on the spike protein (S98F, A222V and S477N) and to quantify their relative importance through time. Our analytical pipeline enables analysing large data sets and has the potential to be quickly applied and updated to track target mutations in space and time throughout the course of an epidemic.


2021 ◽  
pp. 2150196
Author(s):  
Aly R. Seadawy ◽  
Khalid K. Ali ◽  
Jian-Guo Liu

In this paper, we examine the Fokas–Lenells equation (FLE) that depicts the promulgation of ultra-short pulsation in visual fibers while confirming the terms of the following asymptotic arrangement beyond those indispensable for the nonlinear Schrödinger equation. In addition the model includes both spatio–temporal dispersal and self-steepening terms. Then, we discuss deep visual solutions of the FLE via taking the modified Kudryashov method and the extended tanh expansion method.


AoB Plants ◽  
2020 ◽  
Vol 12 (6) ◽  
Author(s):  
Juanjuan Lu ◽  
Wenjing Dong ◽  
Dunyan Tan ◽  
Carol C Baskin ◽  
Jerry M Baskin

Abstract Many studies have been done on the relationship between variation in morphology, dispersal ability and degree of dormancy of heterocarpic species with dimorphic diaspores. However, there are far fewer such studies on species that produce trimorphic diaspores. Our aim was to compare dormancy and germination of achenes from peripheral, intermediate and central positions in the capitulum of the diaspore-trimorphic cold desert annual Asteraceae species Heteracia szovitsii, an important component of plant communities in the cold deserts of NW China. Dormancy breaking/germination responses of the three achene morphs and of seeds isolated from the pericarp were tested in the laboratory using standard procedures, and seedling emergence phenology of the achene morphs was monitored under natural cold desert temperature conditions in an experimental garden with and without supplemental watering. Depth of dormancy of the three achene morphs was peripheral > intermediate > central. Seedlings from the three morphs emerged in spring and in autumn. Cumulative seedling emergence percentage from achenes during 47 months of burial was central > intermediate > peripheral. Central achene morphs emerged over a period of ~12 months after sowing, while intermediate and peripheral achene morphs did so for ~40 and 47 months, respectively. Thus, H. szovitsii exhibits a temporal dispersal strategy. No viable central or intermediate achene morphs were present after 16 and 40 months, respectively, but ~60 % of the non-emerged peripheral achenes morphs were viable after 47 months. Based on our results on diaspore dormancy and those of a previous study of diaspore spatial dispersal of H. szovitsii, we conclude that this species has a high–intermediate–low risk diaspore dispersal/dormancy strategy that likely increases the chances for population persistence over time and space.


Parasitology ◽  
2018 ◽  
Vol 146 (2) ◽  
pp. 241-245 ◽  
Author(s):  
Jesús Veiga ◽  
Eulalia Moreno ◽  
Jesús Benzal ◽  
Francisco Valera

AbstractHighlighting the dispersal ecology of parasites is important for understanding epidemiological, demographic and coevolutionary aspects of host–parasite interactions. Yet, critical aspects of the dispersal stage of parasites, such as longevity and the factors influencing it, are poorly known. Here we study the lifespan of the dispersal stage of an ectoparasitic dipteran,Carnus hemapterus, and the impact of gender, body size and food provisioning on longevity. We found that freshly emerged imagoes survive at most less than 4 days. Longevity increased with body size and, since this parasite exhibits sexual size dimorphism, the bigger females lived longer than males. However, controlling for body size suggests that males lived relatively longer than females. Furthermore, a humid environment and food provisioning (flowers) significantly increased individual life spans. We discuss the relative importance of spatial and temporal dispersal in relation to the infectious potential of this parasite.


2018 ◽  
Vol 122 ◽  
pp. 84-92
Author(s):  
Maria Gisely Camargos ◽  
Clarice Diniz Alvarenga ◽  
Ronaldo Reis Júnior ◽  
Julio Marcos Melges Walder ◽  
Jefferson Castro Novais

2018 ◽  
Author(s):  
Nathan I. Wisnoski ◽  
Mathew A. Leibold ◽  
Jay T. Lennon

Although metacommunity ecology has improved our understanding of how dispersal affects community structure and dynamics across spatial scales, it has yet to adequately account for dormancy. Dormancy is a reversible state of reduced metabolic activity that enables temporal dispersal within the metacommunity. Dormancy is also a metacommunity-level process because it can covary with spatial dispersal and affect diversity across spatial scales. We develop a framework to integrate dispersal and dormancy, focusing on the covariation they exhibit, to predict how dormancy modifies the importance of species interactions, dispersal, and historical contingencies in metacommunities. We examine case studies of microcrustaceans in ephemeral ponds, where dormancy is integral to metacommunity dynamics. We analyze traits of bromeliad-dwelling invertebrates and identify constraints on dispersal and dormancy strategies. Using simulations, we demonstrate that dormancy can alter classic metacommunity patterns of diversity in ways that depend on dispersal–dormancy covariation and spatiotemporal environmental variability. We propose that dormancy may also facilitate evolution-mediated priority effects if locally adapted seed banks prevent colonization by more dispersal-limited species. We present theoretically and empirically testable predictions for other possible ecological and evolutionary implications of dormancy in metacommunities, some of which may fundamentally alter our understanding of metacommunity ecology.


Oikos ◽  
2017 ◽  
Vol 127 (1) ◽  
pp. 147-159 ◽  
Author(s):  
Lucie Mahaut ◽  
Guillaume Fried ◽  
Sabrina Gaba

2013 ◽  
Vol 160 ◽  
pp. 250-262 ◽  
Author(s):  
Jan Plue ◽  
Sara A.O. Cousins

Sign in / Sign up

Export Citation Format

Share Document