scholarly journals Investigation on the effects of vertical baffles on liquid sloshing based on a particle method

2021 ◽  
Vol 2083 (2) ◽  
pp. 022097
Author(s):  
Minghui Chen ◽  
Qiaorui Wu ◽  
Zhen Zhang ◽  
Huimin Yu ◽  
Ruichang Huang

Abstract This study adopts the numerical simulations of Moving Particle Semi-Implicit Methods (MPS), which are meshless methods based on Lagrange particles. Using Lagrange particle has an advantage that it can avoid numerical dissipation problems without directly discretizing the convection term in the governing equation. First of all, a numerical model of a liquid sloshing tank without baffles is used to confirm the effectiveness of the MPS by comparing the numerical results with the experimental data of Kang and Li. And the pressure curves obtained with MPS method were in good agreement with the experimental findings, which confirmed its effectiveness. On that basis, simulations of liquid sloshing movements with one baffle, two symmetrical baffles, and three baffles are performed, respectively. The results indicate that the addition of vertical baffles in the tanks effectively enhanced the ability to reduce liquid sloshing.

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Fenglei Han ◽  
Jingzheng Yao ◽  
Chunhui Wang ◽  
Haitao Zhu

Prandtl’s mixing length method and the k-epsilon method are introduced into the Moving Particle Semi-Implicit (MPS) method for the purpose of modeling turbulence effects associated with water entries of two-dimensional (2D) bow flare section. The presented numerical method is validated by comparing its numerical prediction with experimental data and other numerical results obtained from the Boundary Element Method (BEM). The time histories of the pressure and the vertical slamming force acting on the dropping ship section subjected to various conditions with different dropping velocity and inclined angles are analyzed. The results show that both the pressure and the vertical slamming force are in good agreement with the experimental data.


Author(s):  
Liwu Wang ◽  
Mingzhang Tang ◽  
Sijun Zhang

Abstract In order to study the safe distance between twin-parachute during their inflation process for fighter ejection escape, the fighter was equipped with two canopies and two seats, two types of parachute were used to numerically simulate their inflation process, respectively. One of them is C-9, the other a slot-parachute (S-P). Their physical models were built, then the meshes inside and around both parachutes were generated for fluid-structure interaction (FSI) simulation. The penalty function and the arbitrary Lagrangian-Eulerian (ALE) method were employed in the FSI simulation. To validate the numerical model for FSI simulation, at first the single parachute of the twin-parachute was used for the FSI simulation, the predicted inflation times for both types of parachute were compared with the experimental data. The computed results are in good agreement with experimental data. As a result, the inflation times were predicted with twin-parachute for both kinds of parachute. On the basis of the locations of ejected seats after the separation of seat and pilot, the initial locations and orientations of twin-parachute were also obtained. The numerical simulations for both kinds of parachute were performed by the FSI method, respectively. Our results illustrate that when the interval time for two seats ejected is greater than 0.25s, two pilots attached the twin-parachute are safe, and the twin-parachute would not interfere each other. Moreover, our results also indicate that the FSI simulation for twin-parachute inflation process is feasible for engineering applications and have a great potential for wide use.


Author(s):  
Jaroslaw Jelen ◽  
Wojciech Studzinski ◽  
Michael Brown

Designers of ultrasonic meter stations with headers do not have any experimental data which can help to determine proper location of the multipath ultrasonic meter within the meter run. The results of meter tests are limited to such configurations as a single 90° elbows and two elbows out of plane. Because of the variety of header layouts used in practice any experimental information related to this piping configuration will be of limited use in the design process. The proposed approach is based on the application of Computational Fluid Dynamics (CFD) methods to the evaluation of header effects on ultrasonic flow meter using a commercial CFD code combined with a numerical model of the ultrasonic meter. The numerical simulation of the flow field in the header and meter runs and subsequent integration of the obtained velocity field in a numerical model of multipath ultrasonic meter were used to determine the optimal meter position. This approach was validated against available experimental data on the ultrasonic meter performance downstream of single and double elbow. The comparison of simulations and test data has shown very good agreement of trends exhibited by the meter. The trends were replicated by the simulator within approximately 1% for X/D ≥5 and within 0.5% for X/D ≥9.


Author(s):  
LianCheng Guo ◽  
Shuai Zhang ◽  
Koji Morita ◽  
Kenji Fukuda

Sloshing dynamics of a molten core is one of the fundamental behaviors in core disruptive accidents of a liquid-metal cooled reactor. In addition, solid particle-liquid mixture comprising molten fuel, molten structure, refrozen fuel, solid fuel pellets, etc. could lead to damping of its flowing process in a disrupted core. The objective of the present study is to investigate the applicability of the finite volume particle method (FVP), which is one of the moving particle methods, to 3D motion of liquid sloshing processes measured in a series of experiments. In the first part of this study, a typical sloshing experiment of single liquid phase is simulated to verify the present 3D FVP method for sloshing characteristics that include free surface behaviors. Second, simulations of sloshing problems with solid particles are performed to validate the applicability of the FVP method to the 3D motion of solid particle-liquid mixture flows. Some good agreements between the simulation and its corresponding experiment demonstrate applicability of the present FVP method to 3D fluid dynamics of liquid sloshing flow with solid particles.


2021 ◽  
Vol 44 (3) ◽  
Author(s):  
N Narinder ◽  
Wei-jing Zhu ◽  
Clemens Bechinger

Abstract We study the behavior of active particles (APs) moving in a viscoelastic fluid in the presence of geometrical confinements. Upon approaching a flat wall, we find that APs slow down due to compression of the enclosed viscoelastic fluid. In addition, they receive a viscoelastic torque leading to sudden orientational changes and departure from walls. Based on these observations, we develop a numerical model which can also be applied to other geometries and yields good agreement with experimental data. Our results demonstrate, that APs are able to move through complex geometrical structures more effectively when suspended in a viscoelastic compared to a Newtonian fluid. Graphic Abstract


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


1977 ◽  
Vol 5 (1) ◽  
pp. 6-28 ◽  
Author(s):  
A. L. Browne

Abstract An analytical tool is presented for the prediction of the effects of changes in tread pattern design on thick film wet traction performance. Results are reported for studies in which the analysis, implemented on a digital computer, was used to determine the effect of different tread geometry features, among these being the number, width, and lateral spacing of longitudinal grooves and the angle of zigzags in longitudinal grooves, on thick film wet traction. These results are shown to be in good agreement with experimental data appearing in the literature and are used to formulate guidelines for tread groove network design practice.


2015 ◽  
Vol 11 (3) ◽  
pp. 3224-3228
Author(s):  
Tarek El-Ashram

In this paper we derived a new condition of formation and stability of all crystalline systems and we checked its validity andit is found to be in a good agreement with experimental data. This condition is derived directly from the quantum conditionson the free electron Fermi gas inside the crystal. The new condition relates both the volume of Fermi sphere VF andvolume of Brillouin zone VB by the valence electron concentration VEC as ;𝑽𝑭𝑽𝑩= 𝒏𝑽𝑬𝑪𝟐for all crystalline systems (wheren is the number of atoms per lattice point).


Sign in / Sign up

Export Citation Format

Share Document