intermittent hypoxic training
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3481
Author(s):  
Kamila Płoszczyca ◽  
Miłosz Czuba ◽  
Józef Langfort ◽  
Marcin Baranowski

This study aimed to analyze the effects of live high-train low method (LH-TL) and intermittent hypoxic training (IHT) with a controlled mixed diet on lipid profile in cyclists. Thirty trained male cyclists at a national level with at least six years of training experience participated in the study. The LH-TL group was exposed to hypoxia (FiO2 = 16.5%) for 11–12 h a day and trained under normoxia for 3 weeks. In the IHT group, participants followed the IHT routine three times a week under hypoxia (FiO2 = 16.5%) at lactate threshold intensity. The control group (N) lived and trained under normoxia. The results showed that the 3-week LH-TL method significantly improved all lipid profile variables. The LH-TL group showed a significant increase in HDL-C by 9.0% and a decrease in total cholesterol (TC) by 9.2%, LDL-C by 18.2%, and triglycerides (TG) by 27.6%. There were no significant changes in lipid profiles in the IHT and N groups. ∆TG and ∆TC were significantly higher in the LH-TL group compared to the N group. In conclusion, hypoxic conditions combined with a mixed diet can induce beneficial changes in lipid profile even in highly trained athletes. The effectiveness of the hypoxic stimulus is closely related to the hypoxic training method.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Átila Alexandre Trapé ◽  
Marta Camacho-Cardenosa ◽  
Alba Camacho-Cardenosa ◽  
Eugenio Merellano-Navarro ◽  
Jhennyfer Aline Lima Rodrigues ◽  
...  

Abstract Background Recent studies point to a lower number and reduced severity of cases in higher altitude cities with decreased oxygen concentration. Specific literature has shown several benefits of physical training, so, in this sense, physical training with hypoxic stimulus appears as an alternative that supports the conventional treatments of the COVID-19 patient’s recovery. Thus, this study’s primary aim is to analyze the effects of moderate-intensity intermittent hypoxic training on health outcomes in COVID-19 recovered patients. Methods A clinical trial controlled double-blind study was designed. Participants (30–69 years old) will be recruited among those with moderate to severe COVID-19 symptoms, approximately 30 days after recovery. They will be included in groups according to the training (T) and recovery (R) association with hypoxia (H) or normoxia (N): (a) TH:RH, (b) TN:RH, (c) TN:RN, and last (d) the control group. The 8-week exercise bike intervention will be carried out with a gradual load increase according to the established periods, three times a week in sets of 5 min, 90 to 100% of the anaerobic threshold (AT), and a 2.5-min break. Blood will be collected for genotyping. First, after 4 weeks (partial), after 8 weeks, and later, 4 weeks after the end of the physical training intervention, participants will perform assessments. The primary outcome is the maximum oxygen consumption (VO2peak). The secondary outcomes include lung function, inflammatory mediators, hematological, autonomic parameters, AT, body composition analysis, quality of life, mental health, anthropometric measurements, and physical fitness. The statistical analysis will be executed using the linear regression model with mixed effects at a 5% significance level. Discussion This study is designed to provide evidence to support the clinical benefits of moderate-intensity intermittent hypoxic training as a part of the treatment of patients recovered from COVID-19. It may also provide evidence on the efficacy and safety of intermittent hypoxic training in different health conditions. Lastly, this study presents an innovative strategy enabling up to 16 participants in the same training session. Trial registration ClinicalTrials.gov RBR-5d7hkv. Registered after the start of inclusion on 3 November 2020 with the Brazilian Clinical Trials Registry


2021 ◽  
Vol 8 (8) ◽  
pp. 460-464
Author(s):  
Ali Eroğlu ◽  
Taner Aydın

Objective: The use of hypoxic training has increased to improve the performance of endurance athletes in recent years. Due to not having the suitable conditions and environment for each athlete and team, intermittent hypoxic training has been noted. The purpose of this study is to investigate the effect of intermittent hypoxic training on aerobic and anaerobic performance of elite athletes. Materials and Methods: A total of 40 elite distance athletes were taken into our study and divided into two groups as hypoxia and normoxia. While using the intermittent intervention for the hypoxic group 5 minutes intervals for a total of 1 hour per day, 3 days per week for a-4 week period, the same normoxic training protocol was used for the normoxic group. Aerobic and anaerobic performance parameters were measured with venous blood samples of the athletes in the first three days before and after hypoxic intervention. Results: When the hypoxia and normoxia groups were evaluated before and after intermittent hypoxia, there was no statistically  change in aerobic and anaerobic performance values (p>0.05). Conclusion: We observed that there was not a statistical change of intermittent hypoxic intervention for the performances of hypoxic group. However, the more dose and the duration of hypoxic training, the more amount of performance gain can be achieved.


2021 ◽  
Vol 17 (2) ◽  
pp. 33-38
Author(s):  
L.P. Kozak

Relevance. It was shown a wide therapeutic effects of intermittent hypoxic training (IHT) on the human organism which can increase the organism's resistance to damaging factors by inducing mechanisms of the safety use of energy resources. The objective: to investigate the protective effect of IHT applied at the beginning of the 30-day alcohol intoxication of rats on the redox processes and the state of the antioxidant system of blood and liver tissues. Materials and methods. The study was performed on white male rats, which were divided into four groups: the first - intact (control); animals of the second group received a 15% ethanol solution for 30 days as the only source of drink; third - animals under IHT; fourth - rats that IHT was applied at the beginning of 30 days alcohol intoxication. The amount of the consumed ethanol was monitored during the experiment. Intermittent hypoxic training was performed in the altitude chamber in the following mode: five 10-min “elevations” to a height of 6 km at a rate of 20 m/sec, intervals between the elevations being 30 min. The activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase), total antioxidant activity (IAOA), as well as the content of lactic and pyruvic acids, malone dialdehyde and diene conjugates were determined. The research materials were homogenates of liver tissues and blood. The process is two-phase, which obviously reflects the stages of alcoholism. Results. It was found that alcohol intoxication of animals adapted to IHT is accompanied by an increase in the activity of superoxide dismutase and glutathione peroxidase in the blood and liver tissue against rats that consumed ethanol as the only source of drink. A tendency to increase IAOA and catalase activity against rats that received ethanol for a long time under these conditions was revealed. Analyzing the process of consumption of ethanol solution by animals, we can conclude that animals have a pronounced craving for alcohol in this model of alcoholization. The application of IHT at the beginning of alcohol intoxication as a protective agent delays the phase of formation of a pronounced craving for ethanol and reduces the amount of daily alcohol consumption. Conclusions. Thus, sessions of short-term hypoxic effects at the beginning of chronic ethanol consumption, provide an increase in the antioxidant defence of these animals relative to rats with alcohol intoxication.


2021 ◽  
Author(s):  
Atila Alexandre Trapé ◽  
Marta Camacho-Cardenosa ◽  
Alba Camacho-Cardenosa ◽  
Eugenio Merellano-Navarro ◽  
Jhennyfer Aline Lima Rodrigues ◽  
...  

Abstract Background: Recent studies point to a lower number and a reduction in the severity of cases in higher altitude cities, with decreased oxygen concentration. Specific literature has shown several benefits of physical training, so, in this sense, physical training with hypoxic stimulus appears as an alternative that supports the conventional treatments of the COVID-19 patient's recovery. Thus, this study's primary aim is to analyse the effects of moderate-intensity intermittent hypoxic training on health outcomes in COVID-19 recovered patients. Methods: A clinical trial controlled double-blind study was designed. Participants (30-69 years old) will be recruited among those with moderate to severe COVID-19 symptoms, approximately 30 days after recovery. They will be included in groups according to the training (T) and recovery (R) association with hypoxia (H) or normoxia (N): a) TH:RH, b) TN:RH, c) TN:RN, and, last, d) the control group. The 8-week exercise bike intervention will be carried out with a gradual load increase according to the established periods, three times a week in sets of 5 minutes, 90 to 100% of the anaerobic threshold (AT), and a 2,5-minute break. Blood will be collected for genotyping. First, after four weeks (partial), after eight weeks, and later, four weeks after the end of the physical training intervention, participants will perform assessments. The primary outcome is the maximum oxygen consumption (VO2max). The secondary outcomes include lung function, inflammatory mediators, haematological, autonomic parameters, AT, body composition analysis, quality of life, mental health, anthropometric measurements, and physical fitness. The statistical analysis will be executed using the linear regression model with mixed effects at a 5% significance level. Discussion: This study is designed to provide evidence to support the clinical benefits of moderate-intensity intermittent hypoxic training as a part of the treatment of patients recovered from COVID-19. It may also provide evidence on the efficacy and safety of intermittent hypoxic training in different health conditions. Lastly, this study presents an innovative strategy enabling up to 16 participants in the same training session.Trial registration: Brazilian Clinical Trials Registry, RBR-5d7hkv. Registered after the start of inclusion; 3 November 2020; https://ensaiosclinicos.gov.br/rg/RBR-5d7hkv


Author(s):  
Tadeusz Ambroży ◽  
Marcin Maciejczyk ◽  
Andrzej T. Klimek ◽  
Szczepan Wiecha ◽  
Arkadiusz Stanula ◽  
...  

Background: The aim of the study was to evaluate the effects of intermittent hypoxic training (IHT) on anaerobic and aerobic fitness in elite, national boxers. Methods: The study was conducted over a period of 6 weeks. It comprised 30 national championship boxers, divided into 2 groups: the experimental and control. Both groups performed the same boxing training twice a day (morning and afternoon training). In the afternoon, the experimental group performed training under normobaric conditions in a hypoxic chamber (IHT), while the control group undertook exercise in standard normoxic conditions. In both groups, before and after the 6-week programme, basic anthropometric indices as well as anaerobic (Wingate Test) and aerobic (graded test) fitness were assessed. Results: There was a significant increase in anaerobic peak power (988.2 vs. 1011.8 W), mean anaerobic power (741.1 vs. 764.8 W), total work (22.84 vs. 22.39 kJ), and a decrease in fatigue index (20.33 vs. 18.6 W·s−1) as well as time to peak power (5.01 vs. 4.72 s). Such changes were not observed in the control group. In both groups, no significant changes in endurance performance were noted after the training session – peak oxygen uptake did not significantly vary after IHT. Conclusions: Our results have practical application for coaches, as the IHT seems to be effective in improving anaerobic performance among boxers.


2020 ◽  
Author(s):  
VP Katuntsev ◽  
TV Sukhostavtseva ◽  
AN Kotov ◽  
MV Baranov

Reduced orthostatic tolerance (OT) is a serious concern facing space medicine. This work sought to evaluate the effects of intermittent hypoxic training (IHT) on OT in humans before and after 3 days of head-down bed rest (HDBR) used to model microgravity. The study was carried out in 16 male volunteers aged 18 to 40 years and included 2 series of experiments with 11-day and 21-day IHT administered on a daily basis. During the first IHT session, the concentration of oxygen in the inspired gas mixture was 10%; for other sessions it was adjusted to 9%. OT was assessed by a 20-minute-long orthostatic tilt test (OTT) conducted before and after HDBR. Before HDBR, orthostatic intolerance was observed in 3 participants, while after HDBR, it was observed in 9 of 16 volunteers (p < 0.05). During OTT conducted after HDBR, the heart rate (HR) exceeded control values by 26.8% (p < 0.01). Preexposure to any of the applied IHT regimens led to a reduction in the number of volunteers with orthostatic intolerance. After the 11-day IHT program, there was a less pronounced increase in HR during OTT before HDBR; with the extended IHT regimen, less pronounced changes were observed for HR, systolic, diastolic and mean blood pressure (BP). The increase in HR during OTT after HDBR was significantly lower in the group that had completed the 11-day IHT program, while BP remained stable. The changes in HR and systolic BP were less pronounced in the group that had completed the 21-day IHT program than in the control group (p < 0.05). Thus, IHT reduced the risk of orthostatic disorders and mitigated changes in cardiovascular parameters during the orthostatic test.


2020 ◽  
Vol 15 (9) ◽  
pp. 1260-1271
Author(s):  
Erin L. McCleave ◽  
Katie M. Slattery ◽  
Rob Duffield ◽  
Stephen Crowcroft ◽  
Chris R. Abbiss ◽  
...  

Purpose: To examine whether concurrent heat and intermittent hypoxic training can improve endurance performance and physiological responses relative to independent heat or temperate interval training. Methods: Well-trained male cyclists (N = 29) completed 3 weeks of moderate- to high-intensity interval training (4 × 60 min·wk−1) in 1 of 3 conditions: (1) heat (HOT: 32°C, 50% relative humidity, 20.8% fraction of inspired oxygen, (2) heat + hypoxia (H+H: 32°C, 50% relative humidity, 16.2% fraction of inspired oxygen), or (3) temperate environment (CONT: 22°C, 50% relative humidity, 20.8% fraction of inspired oxygen). Performance 20-km time trials (TTs) were conducted in both temperate (TTtemperate) and assigned condition (TTenvironment) before (base), immediately after (mid), and after a 3-week taper (end). Measures of hemoglobin mass, plasma volume, and blood volume were also assessed. Results: There was improved 20-km TT performance to a similar extent across all groups in both TTtemperate (mean ±90% confidence interval HOT, −2.8% ±1.8%; H+H, −2.0% ±1.5%; CONT, −2.0% ±1.8%) and TTenvironment (HOT, −3.3% ±1.7%; H+H, −3.1% ±1.6%; CONT, −3.2% ±1.1%). Plasma volume (HOT, 3.8% ±4.7%; H+H, 3.3% ±4.7%) and blood volume (HOT, 3.0% ±4.1%; H+H, 4.6% ±3.9%) were both increased at mid in HOT and H+H over CONT. Increased hemoglobin mass was observed in H+H only (3.0% ±1.8%). Conclusion: Three weeks of interval training in heat, concurrent heat and hypoxia, or temperate environments improve 20-km TT performance to the same extent. Despite indications of physiological adaptations, the addition of independent heat or concurrent heat and hypoxia provided no greater performance benefits in a temperate environment than temperate training alone.


2020 ◽  
Vol 245 (8) ◽  
pp. 740-747
Author(s):  
Genell Tantingco ◽  
Myoung-Gwi Ryou

The microglia are the resident immune cells in the central nerve system. In the various pathological conditions, prolonged activated microglia could deteriorate brain damage. The regulation of the microglia polarization should be considered in developing an intervention for ischemic stroke patients. Normobaric intermittent hypoxic training protects the brain from intensive ischemic stresses. This study examined the role of intermittent hypoxic training in the regulation of microglia polarization that occurs in the in vitro model of oxygen–glucose deprivation (OGD)–reoxygenation. EOC20 were assigned to the following groups; (1) Normoxia, (2) oxygen–glucose deprivation–reoxygenation, (3) intermittent hypoxic training, (4) oxygen–glucose deprivation–reoxygenation +  intermittent hypoxic training; 24 h after the intermittent hypoxic training, microglia were harvested to perform the following experiments; cell viability (Calcein AM and LDH activity assay), quantification of proteins (Western blot), cytokine (ELISA), and reactive oxygen species (ROS) (H2DCFDA assays), phagocytic activity by using latex beads coated with FITC, and cell phenotype (immunocytochemistry and flow cytometric analysis, and immunoblot CD206 (M2)). One-way ANOVA with Tukey’s post hoc test was used for the statistical analysis. Oxygen–glucose deprivation/reoxygenation decreases cell viability to 50% of normoxia. Intermittent hypoxic training protects the microglia from oxygen–glucose deprivation/reoxygenation stress. Intermittent hypoxic training regulates the polarization of the microglial phenotype toward anti-inflammatory type M2 (vs. oxygen–glucose deprivation and reoxygenation). Intermittent hypoxic training increases phagocytic activity (about 12 folds) vs. normoxia. ROS in the oxygen–glucose deprivation/reoxygenation group is increased, but intermittent hypoxic training lowers the ROS generation by oxygen–glucose deprivation/reoxygenation. The protein content of the toll-like receptor (TLR2) was significantly elevated in the oxygen–glucose deprivation and reoxygenation group, and intermittent hypoxic training lowered to normoxia level. Anti-inflammatory cytokines, such as IL-10 and IL-4, were significantly increased in the intermittent hypoxic training groups. Due to the effect of intermittent hypoxic training on the microglia phenotype, intermittent hypoxic training could be considered as an effective intervention in the treatment or rehabilitation program for the ischemic stroke victims. Impact statement The effects of intermittent hypoxic training or conditioning on many pathological conditions have been widely investigated. One of the pathological conditions dealt with intermittent hypoxic training is ischemic stroke. Well-known mechanisms of intermittent hypoxia-induced protection are related to increased energy metabolism and the enhanced antioxidant effects. In the last decades, the role of microglia in the progress of ischemic stroke-related brain damage has been focused. The dual-edge function of microglia indicates that the microglia-mediated inflammatory response is definitely beneficial in the early stage of ischemic stroke, but long-term activation of microglia is rather detrimental during the recovery process. The effect of IHT on microglia polarization is not investigated. This study focused on whether IHT regulates the polarization of microglia without dampening its classic phagocytic function. This study will provide pivotal information regarding the effects of IHT on the long-term effects on the recovery process from ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document