magnetic nanoparticles fe3o4
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 8 (1) ◽  
pp. 71
Author(s):  
Hamed M. El-Shora ◽  
Aiah M. Khateb ◽  
Doaa B. Darwish ◽  
Reyad M. El-Sharkawy

Environmental pollution due to the continuous uncontrolled discharge of toxic dyes into the water bodies provides insight into the need to eliminate pollutants prior to discharge is significantly needed. Recently, the combination of conventional chemotherapeutic agents and nanoparticles has attracted considerable attention. Herein, the magnetic nanoparticles (Fe3O4-NPs) were synthesized using metabolites of Aspergillus niger. Further, the surfaces of Fe3O4-NPs were functionalized using 3-mercaptoproionic acid as confirmed by XRD, TEM, and SEM analyses. A purified P. expansum laccase was immobilized onto Fe3O4/3-MPA-SH and then the developed immobilized laccase (Fe3O4/3-MPA-S-S-laccase) was applied to achieve redox-mediated degradation of different dyes. The Fe3O4/3-MPA-S-S-laccase exhibited notably improved stability toward pH, temperature, organic solvents, and storage periods. The Fe3O4/3-MPA-S-S-laccase exhibited appropriate operational stability while retaining 84.34% of its initial activity after 10 cycles. The catalytic affinity (Kcat/Km) of the immobilized biocatalyst was increased above 10-fold. The experimental data showed remarkable improvement in the dyes’ decolorization using the immobilized biocatalyst in the presence of a redox mediator in seven successive cycles. Thus, the prepared novel nanocomposite-laccase can be applied as an alternative promising strategy for bioremediation of textile wastewater. The cytotoxic level of carboplatin and Fe3O4-NPs singly or in combination on various cell lines was concentration-dependent.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Khalida Naseem

Abstract This article encircles the research progress of Fe3O4 NPs loaded composite microgel particles. Preparation methodologies, properties and applications of Fe3O4 NPs loaded composite microgel particles are elaborated here. The effect of different factors on the stability and tunable properties of Fe3O4 NPs loaded composite microgel particles was also investigated in detail. These composite particles have exceptional magnetic properties that make them demanding composite nano-formulation in different fields. Applications of these composite microgel particles in different fields as micro-reactor, drug delivery vehicles, and in adsorption and catalysis have also been elaborated in detail. These composite microgel particles can easily be recovered from the reaction mixture by applying an external magnet due to the presence of fabricated Fe3O4 NPs.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4809
Author(s):  
Fatimah Mohammed Alzahrani ◽  
Norah Salem Alsaiari ◽  
Khadijah Mohammedsaleh Katubi ◽  
Abdelfattah Amari ◽  
Abubakr M. Elkhaleefa ◽  
...  

We report in the present study the in situ formation of magnetic nanoparticles (Fe3O4 or Fe) within porous N-doped carbon (Fe3O4/N@C) via simple impregnation, polymerization, and calcination sequentially. The synthesized nanocomposite structural properties were investigated using different techniques showing its good construction. The formed nanocomposite showed a saturation magnetization (Ms) of 23.0 emu g−1 due to the implanted magnetic nanoparticles and high surface area from the porous N-doped carbon. The nanocomposite was formed as graphite-type layers. The well-synthesized nanocomposite showed a high adsorption affinity toward Pb2+ toxic ions. The nanosorbent showed a maximum adsorption capacity of 250.0 mg/g toward the Pb2+ metallic ions at pH of 5.5, initial Pb2+ concentration of 180.0 mg/L, and room temperature. Due to its superparamagnetic characteristics, an external magnet was used for the fast separation of the nanocomposite. This enabled the study of the nanocomposite reusability toward Pb2+ ions, showing good chemical stability even after six cycles. Subsequently, Fe3O4/N@C nanocomposite was shown to have excellent efficiency for the removal of toxic Pb2+ ions from water.


2020 ◽  
Vol 31 (19) ◽  
pp. 195707 ◽  
Author(s):  
Antonio Tirado-Guizar ◽  
William González-Gómez ◽  
Georgina Pina-Luis ◽  
José Trinidad Elizalde Galindo ◽  
Francisco Paraguay-Delgado

2020 ◽  
Vol 17 (1) ◽  
pp. 46-54
Author(s):  
Farzaneh Moradi ◽  
Masumeh Abdoli-Senejani ◽  
Majid Ramezani

Background: A wide variety of dihydropyrimidins (DHPMs) exhibit pharmacological and biological activities. Herein, an efficient one-pot synthesis of some 3, 4-dihydropyrimidin-2(1H)-one derivatives is reported using Fe3O4 @SiO2–Pr-INH. Objective: Recently, several catalysts have been used to improve the Biginellis-reaction. However, some of these catalysts have imperfections. Herein, a convenient method for the synthesis of 3, 4-dihydropyrimidin- 2(1H)-ones and their sulfur derivatives using Fe3O4 @SiO2–Pr-INH is reported. Materials and Methods: Firstly, the catalyst was synthesized through a simple four-step method. The Fe3O4 MNPs were synthesized using the chemical co-precipitation method, coated with a layer of silica using TEOS, and then functionalized with CPTMS. Subsequently, a nucleophilic substitution of Cl by isoniazid resulted in the formation of the magnetic Fe3O4@SiO2–Pr-INH. After the preparation and characterization of Fe3O4@SiO2–Pr-INH, its catalytic activity was studied in the synthesis of 3, 4-dihydropyrimidin-2(1H)-one derivatives. Following the optimization of the reaction conditions, several 3, 4-dihydropyrimidin-2(1H)-one derivatives were synthesized by the reaction of ethyl acetoacetate or acetylacetone, thiourea or urea and aromatic aldehydes at 80 °C under solvent-free conditions. Results: Isoniazid-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@SiO2–Pr-INH) were prepared using Fe3O4 with silica layer and their surface was modified with isoniazid. They were characterized successfully by infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and were used for the synthesis of some 3, 4-dihydropyrimidin-2(1H)-one derivatives as catalysts. Aromatic aldehydes with electron-donating or electron-withdrawing groups afforded 3, 4- dihydropyrimidin-2(1H)-ones and their sulfur derivatives in good to excellent yields in short reaction times. Conclusion: Isoniazid-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@SiO2–Pr-INH) were used as an efficient catalyst for Biginelli-type synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and 3, 4-dihydropyrimidin- 2(1H)-thiones in good to excellent yields and short reaction times. It is noteworthy that this method has several advantages such as simple experimental procedures, the absence of solvent, environmentally benign process, stability and reusability of the catalyst.


Sign in / Sign up

Export Citation Format

Share Document