Isoniazid-functionalized Fe3O4 Magnetic Nanoparticles as a Green and Efficient Catalyst for the Synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and their Sulfur Derivatives

2020 ◽  
Vol 17 (1) ◽  
pp. 46-54
Author(s):  
Farzaneh Moradi ◽  
Masumeh Abdoli-Senejani ◽  
Majid Ramezani

Background: A wide variety of dihydropyrimidins (DHPMs) exhibit pharmacological and biological activities. Herein, an efficient one-pot synthesis of some 3, 4-dihydropyrimidin-2(1H)-one derivatives is reported using Fe3O4 @SiO2–Pr-INH. Objective: Recently, several catalysts have been used to improve the Biginellis-reaction. However, some of these catalysts have imperfections. Herein, a convenient method for the synthesis of 3, 4-dihydropyrimidin- 2(1H)-ones and their sulfur derivatives using Fe3O4 @SiO2–Pr-INH is reported. Materials and Methods: Firstly, the catalyst was synthesized through a simple four-step method. The Fe3O4 MNPs were synthesized using the chemical co-precipitation method, coated with a layer of silica using TEOS, and then functionalized with CPTMS. Subsequently, a nucleophilic substitution of Cl by isoniazid resulted in the formation of the magnetic Fe3O4@SiO2–Pr-INH. After the preparation and characterization of Fe3O4@SiO2–Pr-INH, its catalytic activity was studied in the synthesis of 3, 4-dihydropyrimidin-2(1H)-one derivatives. Following the optimization of the reaction conditions, several 3, 4-dihydropyrimidin-2(1H)-one derivatives were synthesized by the reaction of ethyl acetoacetate or acetylacetone, thiourea or urea and aromatic aldehydes at 80 °C under solvent-free conditions. Results: Isoniazid-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@SiO2–Pr-INH) were prepared using Fe3O4 with silica layer and their surface was modified with isoniazid. They were characterized successfully by infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and were used for the synthesis of some 3, 4-dihydropyrimidin-2(1H)-one derivatives as catalysts. Aromatic aldehydes with electron-donating or electron-withdrawing groups afforded 3, 4- dihydropyrimidin-2(1H)-ones and their sulfur derivatives in good to excellent yields in short reaction times. Conclusion: Isoniazid-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@SiO2–Pr-INH) were used as an efficient catalyst for Biginelli-type synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and 3, 4-dihydropyrimidin- 2(1H)-thiones in good to excellent yields and short reaction times. It is noteworthy that this method has several advantages such as simple experimental procedures, the absence of solvent, environmentally benign process, stability and reusability of the catalyst.

Author(s):  
Niloofar Sabet Mehr ◽  
Shahrzad Abdolmohammadi ◽  
Maryam Afsharpour

Background: Nanoscale metal oxide catalysts have been extensively employed in organic reactions because they have been found to influence the chemical and physical properties of the bulk material. The chromene (benzopyran) nucleus constitutes the core structure in a major class of many biologically active compounds, and interest in their chemistry consequently continues because of their numerous biological activities. The xanthene (dibenzopyran) derivatives are classified as highly significant compounds which display a number of various bioactive properties. Pyrimidinones have also gained interest due to their remarkable biological utilization such as antiviral, antibacterial, antihypertensive, antitumor and calcium blockers effects. Objective: Our aim in the work presented herein was to prepare activated carbon/MoO3 nanocomposite and explore its role as a green and recyclable catalyst for the synthesis of chromeno[d]pyrimidinediones and xanthenones under ethanol-drop grinding at room temperature. Methods: The activated carbon/MoO3 nanocomposite was prepared successfully via a simple route in which carbonization of gums as new natural precursors was used for the synthesis of activated carbon. This nanocomposite was then effectively used in a reaction of 3,4- methylenedioxyphenol, aromatic aldehydes and active methylene compounds including 1,3-dimethylbarbituric acid and dimedone to synthesize a series of chromeno[d]pyrimidinediones and xanthenones in high yields. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), Powder x-ray diffractometry (XRD), Scanning electron microscope (SEM), Raman spectroscopy, and also by TGA analysis. Confirmation of the structures of compounds 5(a-g) and 6(a-g) were also established with IR, 1 H NMR and 13C NMR spectroscopic data and also by elemental analyses. Results: A number of 6,8-dimethyl-10-phenyl-6,10-dihydro-7H-[1,3]dioxolo[4΄,5΄:6,7]chromeno[2,3-d]pyrimidine-7,9(8H)-diones and 7,7- dimethyl-10-(4-methylphenyl)-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones were effectively synthesized using activated carbon/MoO3 nanocomposite (0.05 gr) as catalyst under ethanol-drop grinding at room temperature. The desired products were obtained in high yields (93-97%) within short reaction times (15-20 min). Conclusion: This paper investigates the catalytic potential of the synthesized activated carbon/MoO3 nanocomposite for the prepataion of chromeno[d]pyrimidinediones and xanthenones under ethanol-drop grinding procedure. The mildness of the reaction conditions, high yields of products, short reaction times, experimental simplicity, and avoid the use of harmful solvents or reagents makes this procedure preferable for the synthesis of these compounds.


2017 ◽  
Vol 25 (2) ◽  
pp. 163-178 ◽  
Author(s):  
Reza Heydari ◽  
Rohollah Rahimi ◽  
Mehrnoosh Kangani ◽  
Afshin Yazdani-Elah-Abadi ◽  
Mojtaba Lashkari

Abstract The potassium carbonate was applied as a green and efficient catalyst for the one-pot synthesis of pyran annulated heterocyclic systems, via the condensation between aromatic aldehydes, malononitrile and dimedone/1-naphtole by a grinding method at room temperature and solvent-free conditions. Short reaction times, environmentally friendly procedure and excellent yields are the main advantages of this procedure which makes it more economic than other environmentally synthetic methods.


2017 ◽  
Vol 72 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Adel A. Marzouk ◽  
Antar A. Abdelhamid ◽  
Shaaban K. Mohamed ◽  
Jim Simpson

AbstractMorpholinium hydrogen sulfate as an ionic liquid was employed as a catalyst for the synthesis of a biologically active series of multi-substituted imidazoles by a four-component reaction involving the combination of benzil with different aromatic aldehydes, ammonium acetate, and 1-amino-2-propanol under solvent-free conditions. The key advantages of this method are shorter reaction times, very high yield, and ease of processing. Furthermore, the resulting products can be purified by a non-chromatographic method and the ionic liquid catalyst is reusable. All of these novel compounds have been fully characterized from spectral data. The X-ray crystal structures of two representative molecules are also detailed.


2016 ◽  
Vol 18 (9) ◽  
pp. 2843-2850 ◽  
Author(s):  
Pallab Kumar Saikia ◽  
Podma Pollov Sarmah ◽  
Bibek Jyoti Borah ◽  
Lakshi Saikia ◽  
Kokil Saikia ◽  
...  

Fe3O4@AT-mont. based on naturally occurring montmorillonite exhibit an efficient catalytic Baeyer–Villiger oxidation for different cyclic and aromatic ketones.


2019 ◽  
Vol 22 (2) ◽  
pp. 123-128
Author(s):  
Setareh Habibzadeh ◽  
Hassan Ghasemnejad-Bosra ◽  
Mina Haghdadi ◽  
Soheila Heydari-Parastar

Background: In this study, we developed a convenient methodology for the synthesis of coumarin linked to pyrazolines and pyrano [2,3-h] coumarins linked to 3-(1,5-diphenyl-4,5- dihydro-1H-pyrazol-3-yl)-chromen-2-one derivatives using Chlorosulfonic acid supported Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles (Fe3O4-PPCA) catalyst. Materials and Methods:: Fe3O4-PPCA was investigated as an efficient and magnetically recoverable Nanocatalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with a variety of aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be easily recovered by applying an external magnet device and reused for at least 10 reaction runs without considerable loss of reactivity. Results and Conclusion: The advantages of this protocol are the use of commercially available materials, simple and an inexpensive procedure, easy separation, and an eco-friendly procedure, and it shows good reaction times, good to high yields, inexpensive and practicability procedure, and high efficiency.


2018 ◽  
Vol 21 (8) ◽  
pp. 602-608 ◽  
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Aim and Objective: In the present work, 1, 1’-sulfinyldiethylammonium bis (hydrogen sulfate) as a novel room temperature dicationic ionic liquid was synthesized and used as a catalyst for xanthenediones synthesis. Material and Method: The dicationic ionic liquid has been synthesized using ethylamine and thionyl chloride as precursors. Then, by the reaction of [(EtNH2)2SO]Cl2 with H2SO4, [(EtNH2)2SO][HSO4]2 was prepared and after that, it was characterized by FT-IR, 1H NMR, 13C NMR as well as Hammett acidity function. This dicationic ionic liquid was used as a catalyst for the synthesis of xanthenediones via condensation of structurally diverse aldehydes and dimedone under solvent-free conditions. The progress of the reaction was monitored by thin layer chromatography (ethyl acetate/n-hexane = 3/7). Results: An efficient solvent-free method for the synthesis of xanthenediones has been developed in the presence of [(EtNH2)2SO][HSO4]2 as a powerful catalyst with high to excellent yields, and short reaction times. Additionally, recycling studies have demonstrated that the dicationic ionic liquid can be readily recovered and reused at least four times without significant loss of its catalytic activity. Conclusion: This new dicationic ionic liquid can act as a highly efficient catalyst for xanthenediones synthesis under solvent-free conditions.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Arefeh Dehghani Tafti ◽  
Bi Bi Fatemeh Mirjalili ◽  
Abdolhamid Bamoniri ◽  
Naeimeh Salehi

AbstractNano-eggshell/Ti(IV) as a novel naturally based catalyst was prepared, characterized and applied for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. The characterization of nano-eggshell/Ti(IV) was performed using Fourier Transform Infrared spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and Thermo Gravimetric Analysis. Dihydropyrano[2,3-c]pyrazoles were synthesized in the presence of nano-eggshell/Ti(IV) via a four component reaction of aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate at room temperature under solvent free conditions. The principal affairs of this procedure are mild condition, short reaction times, easy work-up, high yields, reusability of the catalyst and the absence of toxic organic solvents.


2021 ◽  
Vol 66 ◽  
pp. 61-71
Author(s):  
Tahereh Heidarzadeh ◽  
Navabeh Nami ◽  
Daryoush Zareyee

The principal aim of this research is using biosynthesized ZnO-CaO nanoparticles (NPs) for preparation of indole derivatives. ZnO-CaO NPs have been prepared using Zn(CH3COO)2 and eggshell waste powder in solvent-free conditions. Morphology and structure of NPs were determined by FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive spectra (EDS). It was used as a highly efficient catalyst for the synthesis of indole derivatives. Some indole derivatives were synthesized by the reaction of indole, formaldehyde, aromatic and aliphatic amines in the presence of ZnO-CaO NPs (5 mol%) in ethanol under reflux conditions. The assigned structure was further established by CHN analyses, NMR, and FT-IR spectra. Because of excellent capacity, the exceedingly simple workup and good yield, eco-friendly catalyst ZnO-CaO NPs were proved to be a good catalyst for this reaction.


2011 ◽  
Vol 76 (4) ◽  
pp. 235-241 ◽  
Author(s):  
Li-Qiang Wu ◽  
Wei-Lin Li ◽  
Fu-Lin Yan

A series of new 8-aryl-7,8-dihydro[1,3]dioxolo[4,5-g]chromen-6-ones were synthesized via a three-component reaction of 3,4-methylenedioxyphenol, aromatic aldehydes and Meldrum’s acid in the presence of CeCl3·7H2O under solvent-free conditions. The method provided several advantages such as easy work-up, high yields and environmentally benign procedure.


Sign in / Sign up

Export Citation Format

Share Document