double discharge
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Okonkwo Ugochukwu Chuka ◽  
Okafor Christian Emeka ◽  
Ihueze Christopher Chukwutoo

In this study, a double barrel cassava grating machine with double discharge outlet has been developed and its performance evaluated and optimized. The machine was designed to ensure very high throughput, easy decoupling and coupling and reduction in grating time. The performance evaluation of the grating machine was carried out using Design Expert Software. A central composite rotatable design of response surface methodology (RSM) was adopted in determining the optimum operating condition of the machine. The optimum operating condition obtained from the machine shows an optimum abrasive surface hole size of 6mm, feed rate of 11.8kg/min and an optimum feed rate of 20.16 kg/min; a through put capacity of 730.8kg/hr. The average mass loss, partially grated and completely grated were found to be 1.43kg, 1.48kg and 22.09kg, respectively for 25kg sample; which indicates effective grating and waste was drastically reduced with an average grating efficiency of 86.23%.



2018 ◽  
Vol 11 (5) ◽  
pp. 1437-1448
Author(s):  
Z. Parlak ◽  
M. Kemerli ◽  
T. Engin ◽  
Y. Koç ◽  
◽  
...  


2018 ◽  
Vol 25 (5) ◽  
pp. 053519 ◽  
Author(s):  
Zhihui Fan ◽  
Huijie Yan ◽  
Yidi Liu ◽  
Hongfei Guo ◽  
Yuying Wang ◽  
...  


2017 ◽  
Vol 24 (11) ◽  
pp. 113521 ◽  
Author(s):  
Zhiwen Wu ◽  
Guorui Sun ◽  
Zhen Liu ◽  
Xiangyang Liu ◽  
Kan Xie ◽  
...  


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Tristan Wolfe ◽  
Yu-Tai Lee ◽  
Michael E. Slipper

A generalized model for mapping the trend of the performance characteristics of a double-discharge centrifugal fan is developed based on the work by Casey and Robinson (C&R), which formulated compressor performance maps for tip-speed Mach numbers ranging from 0.4 to 2 using test data obtained from turbochargers with vaneless diffusers. The current paper focuses on low-speed applications for Mach number below 0.4. The C&R model uses four nondimensional parameters at the design condition including the flow coefficient, the work input coefficient, the tip-speed Mach number, and the polytropic efficiency, in developing a prediction model that requires limited geometrical knowledge of the centrifugal turbomachine. For the low-speed fan case, the C&R formulas are further extended to a low-speed, incompressible analysis. The effort described in this paper begins by comparing generalized results using efficiency data obtained from a series of fan measurements to that using the C&R model. For the efficiency map, the C&R model is found to heavily depend on the ratio of the flow coefficient at peak efficiency to that at the choke flow condition. Since choke flow is generally not applicable in the low-speed centrifugal fan operational environment, an alternate, but accurate estimation method based on fan free delivery derived from the fan test data is presented. Using this new estimation procedure, the modified C&R model predicts reasonably well using the double-discharge centrifugal fan data for high-flow coefficients, but fails to correlate with the data for low-flow coefficients. To address this undesirable characteristic, additional modifications to the C&R model are also presented for the fan application at low flow conditions. A Reynolds number correction is implemented in the work input prediction of the C&R model to account for low-speed test conditions. The new model provides reasonable prediction with the current fan data in both work input and pressure rise coefficients. Along with the developments for the efficiency and work input coefficient maps, the use of fan shut-off and free delivery conditions are also discussed for low-speed applications.



Author(s):  
Yu-Tai Lee ◽  
Tristan Wolfe ◽  
Michael E. Slipper

A generalized model for mapping the trend of the performance characteristics of a double-discharge centrifugal fan is developed based on the work by Casey and Robinson (C&R) which formulated compressor performance maps for tip-speed Mach numbers ranging from 0.4 to 2 using test data obtained from turbochargers with vaneless diffusers. The current paper focuses on low-speed applications for Mach number below 0.4. The C&R model uses four non-dimensional parameters at the design condition including the flow coefficient, the work input coefficient, the tip-speed Mach number and the polytropic efficiency, in developing a prediction model that requires limited geometrical knowledge of the centrifugal turbomachine. For the low-speed fan case, the C&R formulas are further extended to a low-speed, incompressible analysis. The effort described in this paper begins by comparing generalized results using efficiency data obtained from a series of fan measurements to that using the C&R model. For the efficiency map, the C&R model is found to heavily depend on the ratio of the flow coefficient at peak efficiency to that at the choke flow condition. Since choke flow is generally not applicable in the low-speed centrifugal fan operational environment, an alternate, but accurate estimation method based on fan free delivery derived from the fan test data is presented. Using this new estimation procedure, the modified C&R model predicts reasonably well using the double-discharge centrifugal fan data for high flow coefficients, but fails to correlate with the data for low flow coefficients. To address this undesirable characteristic, additional modifications to the C&R model are also presented for the fan application at low flow conditions. A Reynolds number correction is implemented in the work input prediction of the C&R model to account for low-speed test conditions. The new model provides reasonable prediction with the current fan data in both work input and pressure rise coefficients. Along with the developments for the efficiency and work input coefficient maps, the use of fan shut-off and free delivery conditions are also discussed for low-speed applications.



Sign in / Sign up

Export Citation Format

Share Document