similarity laws
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 653
Author(s):  
Florian Julian Lugauer ◽  
Josef Kainz ◽  
Elena Gehlich ◽  
Matthias Gaderer

Storage technologies are an emerging element in the further expansion of renewable energy generation. A decentralized micro-pumped storage power plant can reduce the load on the grid and contribute to the expansion of renewable energies. This paper establishes favorable boundary conditions for the economic operation of a micro-pump storage (MPS) system. The evaluation is performed by means of a custom-built simulation model based on pump and turbine maps which are either given by the manufacturer, calculated according to rules established in studies, or extended using similarity laws. Among other criteria, the technical and economic characteristics regarding micro-pump storage using 11 pumps as turbines controlled by a frequency converter for various generation and load scenarios are evaluated. The economical concept is based on a small company (e.g., a dairy farmer) reducing its electricity consumption from the grid by storing the electricity generated by a photovoltaic system in an MPS using a pump as a turbine. The results show that due to the high specific costs incurred, systems with a nominal output in excess of around 22 kW and with heads beyond approximately 70 m are the most profitable. In the most economical case, a levelized cost of electricity (LCOE) of 29.2 €cents/kWh and total storage efficiency of 42.0% is achieved by optimizing the system for the highest profitability.


2021 ◽  
Vol 16 (5) ◽  
Author(s):  
Yangyang Fu ◽  
Huihui Wang ◽  
Bocong Zheng ◽  
Peng Zhang ◽  
Qi Hua Fan ◽  
...  

Author(s):  
Shuai Wang ◽  
Fei Xu ◽  
Xiaoyu Zhang ◽  
Zhen Dai ◽  
Xiaochuan Liu ◽  
...  
Keyword(s):  

Author(s):  
Jafar Mehdi Hassan ◽  
Salman Hussien Omran ◽  
Laith Jaafer Habeeb ◽  
Alamaslamani Ammar Fadhil Shnawa ◽  
Adrian Ciocănea

2021 ◽  
Vol 22 (1) ◽  
pp. 35-46
Author(s):  
Syed Muzzamil Hussain Shah ◽  
Zahiraniza Mustaffa ◽  
Shabir Hussain Khahro ◽  
Khamaruzaman Wan Yusof ◽  
Aminuddin Ab Ghani ◽  
...  

In terms of stability, the response of static cars in floodwaters has been widely investigated. However, the hydrodynamics of a non-static vehicle exposed to such events are less explored. Herein the study ponders the assessment of the hydrodynamic forces experienced by a non-static vehicle attempting to cross a low-lying flooded street. With that regards, a Perodua Viva was modeled (1:10) and tested in the Hydraulics Laboratory under partial submergence and sub-critical flows, fulfilling the similarity laws. Since the Froude number could best analyze the flow conditions, the behavior of the hydrodynamic forces and the Froude number have been the focus of this investigation. From the study of outcomes, an inverse relation of the Froude number with respect to the buoyancy force, along with positive trends relating to drag, frictional, and rolling resistance, were noticed. ABSTRAK: Dari segi kestabilan, tindak balas kereta statik dalam air banjir telah banyak dikaji. Walau bagaimanapun, hidrodinamik kenderaan tidak statik yang terdedah kepada kejadian seperti itu kurang diterokai. Kajian ini menilai daya hidrodinamik kenderaan tidak statik yang cuba melintas jalan raya yang banjir. Sehubungan itu, sebuah Perodua Viva dimodelkan (1:10) dan diuji dalam Makmal Hidraulik di bawah perendaman separa dan didedahkan kepada aliran sub-kritikal, seperti ketika kejadian. Manakala nombor Froude adalah terbaik dalam menganalisa keadaan aliran air. Oleh itu, tindak balas daya hidrodinamik dan nombor Froude menjadi fokus penyelidikan ini. Dapatan kajian menunjukkan kaitan terbalik nombor Froude pada daya apungan, sedangkan tren positif yang berkaitan dengan daya tarik, geseran dan rintangan guling diperhatikan.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 791
Author(s):  
Nicolas Velasquez ◽  
Ricardo Mantilla

Regional Distributed Hydrological models are being adopted around the world for prediction of streamflow fluctuations and floods. However, the details of the hydraulic geometry of the channels in the river network (cross sectional geometry, slope, drag coefficients, etc.) are not always known, which imposes the need for simplifications based on scaling laws and their prescription. We use a distributed hydrological model forced with radar-derived rainfall fields to test the effect of spatial variations in the scaling parameters of Hydraulic Geometric (HG) relationships used to simplify routing equations. For our experimental setup, we create a virtual watershed that obeys local self-similarity laws for HG and attempt to predict the resulting hydrographs using a global self-similar HG parameterization. We find that the errors in the peak flow value and timing are consistent with the errors that are observed when trying to replicate actual observation of streamflow. Our results provide evidence that local self-similarity can be a more appropriate simplification of HG scaling laws than global self-similarity.


Author(s):  
Shuai Wang ◽  
Fei Xu ◽  
Xiaoyu Zhang ◽  
Zhen Dai

A framework of similarity laws, termed oriented-density-length-velocity (ODLV) framework, is suggested for the geometric distorted structures subjected to impact loading. The distinct feature of this framework is that the newly proposed oriented dimensions, dimensionless numbers and scaling factors for physical quantity are explicitly expressed by the characteristic lengths of three spatial directions, which overcome the inherent defects that traditional scalar dimensional analysis could not express the effects of structural geometric characteristics and spatial directions for similarity. The non-scalabilities of geometrical distortion as well as other distortions such as different materials and gravity could be compensated by the reasonable correction for the impact velocity, the geometrical thickness and the density, when the proposed dimensionless number of equivalent stress is used between scaled model and prototype. Three analytical models of beam, plate and shell subjected to impact mass or impulsive velocity are verified by equation analysis. And a numerical model of circular plate subjected to dynamic pressure pulse is verified in more detail, form the view of point of space deformation, deformation history and the components of displacement, strain and stress. The results show that the proposed dimensionless numbers have attractively perfect ability to express the dimensionless response equations of displacement, angle, time, strain and strain rate. When the proposed dimensionless numbers are used to regularize impact models, the structural responses of the geometrically distorted scaled models can behave the completely identical behaviors with those of the prototype on space and time —not only for the direction-independent equivalent stress, strain and strain rate but also for the direction-dependent displacement, stress and strain components.


Sign in / Sign up

Export Citation Format

Share Document