thinned continental crust
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 475
Author(s):  
Valentina Magni ◽  
John Naliboff ◽  
Manel Prada ◽  
Carmen Gaina

Back-arc basins in continental settings can develop into oceanic basins, when extension lasts long enough to break up the continental lithosphere and allow mantle melting that generates new oceanic crust. Often, the basement of these basins is not only composed of oceanic crust, but also of exhumed mantle, fragments of continental crust, intrusive magmatic bodies, and a complex mid-ocean ridge system characterised by distinct relocations of the spreading centre. To better understand the dynamics that lead to these characteristic structures in back-arc basins, we performed 2D numerical models of continental extension with asymmetric and time-dependent boundary conditions that simulate episodic trench retreat. We find that, in all models, episodic extension leads to rift and/or ridge jumps. In our parameter space, the length of the jump ranges between 1 and 65 km and the timing necessary to produce a new spreading ridge varies between 0.4 and 7 Myr. With the shortest duration of the first extensional phase, we observe a strong asymmetry in the margins of the basin, with the margin further from trench being characterised by outcropping lithospheric mantle and a long section of thinned continental crust. In other cases, ridge jump creates two consecutive oceanic basins, leaving a continental fragment and exhumed mantle in between the two basins. Finally, when the first extensional phase is long enough to form a well-developed oceanic basin (>35 km long), we observe a very short intra-oceanic ridge jump. Our models are able to reproduce many of the structures observed in back-arc basins today, showing that the transient nature of trench retreat that leads to episodes of fast and slow extension is the cause of ridge jumps, mantle exhumation, and continental fragments formation.


2020 ◽  
Author(s):  
Geoffroy Mohn ◽  
Michael Nirrengarten ◽  
Andrea Schito ◽  
Nick Kusznir ◽  
Sveva Corrado ◽  
...  

<p>Continent Ocean Transitions (COTs) record the processes leading to continental breakup and localized oceanic accretion initiation. The recent IODP Expeditions 367-368 and 368X at the SE China margins combined with high quality multi-channel seismic profiles provide a unique dataset to explore the tectono-magmatic and thermal evolution from final rifting to early seafloor spreading. To investigate these issues, we developed a multi-disciplinary approach combining reflection seismic interpretations with geophysical quantitative analysis calibrated thanks to drilling results, from which we measured and modelled the thermal maturity in pre-/syn- to post-rift sediments.</p><p>Drilling results show that the transition from the most thinned continental crust to new, largely igneous crust is narrow (~20 km). During final rifting, decompression melting forming Mid-Ocean Ridge type magmatism emplaced within thinned continental crust as deep intrusions and shallow extrusive rocks concomitant with continued deformation by extensional faults. The initial igneous crust of the conjugate margins is asymmetric in width and morphology. The wider and faulted newly accreted domain on the SE China side indicates that magmatic accretion was associated with tectonic faulting during the formation of initial oceanic lithosphere, a feature not observed on the conjugate Palawan side. We suggest that deformation and magmatism were not symmetrically distributed between the conjugate margins during the initiation of seafloor spreading but evolved asymmetrically prior to the spreading ridge stabilising.</p><p>Organic matter from post-rift sediments has low thermal maturities due to limited burial and the absence of late post-rift magmatism. In contrast, pre to syn-rift sediments show significant variability in thermal maturities across the COT. Localised high thermal maturities for the pre- to syn-rift sediments requires that significant additional heat be imparted at shallow depths during breakup, likely related to magmatic intrusion or subsurface expressions of volcanism. The heterogeneous variation in thermal maturity observed across the COT reflects localised thermal perturbations caused by magmatic additions.</p>


Author(s):  
A.A. Shaikhullina ◽  
◽  
E.P. Dubinin ◽  
A.A. Bulychev ◽  
M.S. Baranovsky ◽  
...  

The Chagos-Laccadiv Range is a linear-elongated structure adjacent to the passive margin of western India. The ridge consists of three segments: northern — Lakkadiv ridge, central — Maldives ridge and southern — bank (archipelago) Chagos. The ridges are separated by depressions and have different manifestations in morphology and anomalous gravitational field. Modeling of the density structure of the Chagos-Lakkadive Ridge tectonosphere showed that the Lakkadive and Maldive segments, most likely, represent submerged blocks of thinned continental crust, partially separated from the continental margin of India by a riftogenic basin. Along with the assumption that the Chagos Bank may contain fragments of the continental crust, the main factor in its formation is apparently the active magmatic activity of the Reunion hot spot, leading to an increase in the thickness of the crust due to underplating. Physical modeling showed that the formation of such a linear structure is possible in the presence of thermal (hot spot) and structural (faults and cracks) inhomogeneities in the model continental lithosphere, which within the continental margin led to a jump (jumping) of the spreading axis towards the young margin and partial separation from it narrow linearly elongated microblocks (ridges).


2019 ◽  
Vol 221 (1) ◽  
pp. 37-59 ◽  
Author(s):  
J Kim Welford ◽  
Sonya A Dehler ◽  
Thomas Funck

SUMMARY Orphan Basin, a massive deepwater rifted basin off the northeastern coast of Newfoundland, was one of the targets of the 2009 SIGNAL (Seismic Investigations off Greenland, Newfoundland and Labrador) experiment to collect refraction/wide-angle reflection (RWAR) data from the Bonavista Platform, through the Orphan Basin, to the Orphan Knoll, and beyond into oceanic crust. Both the data from an earlier RWAR acquisition and the new data were jointly analysed in order to improve on the earlier velocity model and extend its coverage landward and seaward. The resulting velocity model is characterized by an 8–9-km-thick sedimentary package immediately outboard of the Bonavista Platform, which thins toward the Orphan Knoll and beyond. The shallowest modelled sedimentary layer, interpreted as Paleocene and younger post-rift sediments, does not show significant thickness variations and velocities do not exceed 3.3 km s–1. The second modelled sedimentary layer with laterally variable velocities ranging from 2.3 to 5.3 km s–1, interpreted as Late Cretaceous post-rift sediments, is thickest over an interpreted failed rift. The deepest modelled sedimentary layer consists of laterally variable velocities that do not exceed 5.9 km s–1 and is interpreted as possibly Jurassic to Early Cretaceous syn-rift sediments. The crust beneath the Bonavista Platform is subdivided into an upper (5.4–5.9 km s–1), middle (5.9–6.4 km s–1) and lower crust (6.4–6.9 km s–1). The middle crust is modelled as disappearing beneath the seaward limit of the Bonavista Platform at an interpreted failed rift, only to re-appear 100 km further seaward beneath the central Orphan Basin and extend to the seaward limit of the Orphan Knoll, beyond which the crust can be modelled by just an upper (5.0–6.7 km s–1) and a lower (6.7–7.0 km s–1) crustal layer. Towards land, for the first 450 km of the model, velocities generally follow the globally averaged velocity trend for rifted continental crust, albeit with slightly elevated velocities suggestive of magmatic contributions. At the failed rift, within the continental domain, hyperextended crust is modelled, overlying a limited zone of serpentinized mantle. Seaward of Orphan Knoll, the interpretation for the velocity structure is less definitive but an 80-km-wide continent–ocean transition zone consisting of either transitional embryonic oceanic crust or thinned continental crust overlying serpentinized mantle is proposed. Upper mantle velocities as low as 7.7 km s–1 are modelled beneath the interpreted failed continental rift as well as beneath the continent–ocean transition zone, while the rest of the crustal model is underlain by typical mantle velocities of 8 km s–1. Analysis of extension and thinning factors based on the velocity model reveal that the failed rift experienced hyperextension and should have achieved full crustal embrittlement, consistent with localized mantle serpentinization.


2019 ◽  
Vol 220 (3) ◽  
pp. 2068-2073 ◽  
Author(s):  
Dániel Kiss ◽  
Lorenzo G Candioti ◽  
Thibault Duretz ◽  
Stefan M Schmalholz

SUMMARY We present 2-D numerical simulations of convergence at a hyperextended passive margin with exhumed subcontinental mantle. We consider viscoelasto-plastic deformation, heat transfer and thermomechanical coupling by shear heating and associated thermal softening due to temperature dependent viscosity. The simulations show subduction initiation for convergence velocities of 2 cm yr−1, initial Moho temperatures of 525 °C and maximal deviatoric stresses of ca. 800 MPa, around the Moho, prior to localization. Subduction initiates in the region with thinned continental crust and is controlled by a thermally activated ductile shear zone in the mantle lithosphere. The shear zone temperature can be predicted with a recently published analytical expression. The criterion for subduction initiation is a temperature difference of at least 225 °C between predicted temperature and initial Moho temperature. The modelled forced subduction broadly agrees with geological data and reconstructions of subduction during closure of the Piemont-Liguria basin, caused by convergence of the European and Adriatic plates during the Alpine orogeny.


2018 ◽  
Vol 69 (3) ◽  
pp. 254-263 ◽  
Author(s):  
Michal Kováč ◽  
Emő Márton ◽  
Tomáš Klučiar ◽  
Rastislav Vojtko

AbstractThe opening and evolution of the Western Carpathians Miocene basins was closely related to the north-eastward tectonic extrusion of the ALCAPA Mega-Unit lithosphere caused by the final stage of collision of the Eastern Alpine–Western Carpathian orogenic system with the European Platform and Alpine convergence with the Adria plate. The roll back effect of the oceanic or thinned continental crust of the Magura–Krosno realms, subduction below the front of the Carpathians in the north-east, east and relative plate velocities led to gradual stretching of the overriding micro-plates (defined as the ALCAPA and Tisza Dacia Mega-Unit). Diverse movement trajectories of the ALCAPA crustal wedge individual segments (Eastern Alps, Western Carpathians, and Northern Pannonian domain) were accompanied by several counter-clockwise rotational phases. Beside the interpreted Early Miocene “en-block” counter-clockwise rotation, most of the rotations in the Central Western Carpathians were caused by “domino-effect tectonics” inside strike-slip zones and took part in the basin opening, which was in most cases followed by rapid subsidence.


2017 ◽  
Vol 43 (1) ◽  
pp. 357 ◽  
Author(s):  
J. Papoulia ◽  
J. Makris

We developed velocity models of the crust and sediments offshore south western Greece, between the island of Zakynthos and Messinia. Using these velocity models and depth migrating the seismic data we delineated the main faults and associated them with the tectonic processes of western Greece. This active seismic experiment was essential for defining the limits between the continental domain of western Greece and the oceanic one of the deep Ionian Sea. We successfully linked the onshore with the offshore tectonics and for the first time it was possible to understand how the main dextral fault systems of Cephalonia and Andravida are responsible for the crustal deformation, and its link to the local seismicity. Most of the seismic activity is connected to thrusting, due to crustal shortening or strike-slip faulting that follows the two main dextral wrench faults of Cephalonia and Andravida. It was recognized that the back stop offshore western Peloponnese is floored by thinned continental crust of Preapulia and that the Hellenic Alpine napes do not extend in the back stop domain.


Sign in / Sign up

Export Citation Format

Share Document