2D turbulence closures for the barotropic jet instability simulation

Author(s):  
Pavel A. Perezhogin

AbstractIn the present work the possibility of turbulence closure applying to improve barotropic jet instability simulation at coarse grid resolutions is considered. This problem is analogous to situations occurring in eddy-permitting ocean models when Rossby radius of deformation is partly resolved on a computational grid. We show that the instability is slowed down at coarse resolutions. As follows from the spectral analysis of linearized equations, the slowdown is caused by the small-scale normal modes damping arising due to numerical approximation errors and nonzero eddy viscosity. In order to accelerate instability growth, stochastic and deterministic kinetic energy backscatter (KEBs) parameterizations and scale-similarity model were applied. Their utilization led to increase of the growth rates of normal modes and thus improve characteristic time and spatial structure of the instability.

Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 425-445 ◽  
Author(s):  
T. Nissen-Meyer ◽  
M. van Driel ◽  
S. C. Stähler ◽  
K. Hosseini ◽  
S. Hempel ◽  
...  

Abstract. We present a methodology to compute 3-D global seismic wavefields for realistic earthquake sources in visco-elastic anisotropic media, covering applications across the observable seismic frequency band with moderate computational resources. This is accommodated by mandating axisymmetric background models that allow for a multipole expansion such that only a 2-D computational domain is needed, whereas the azimuthal third dimension is computed analytically on the fly. This dimensional collapse opens doors for storing space–time wavefields on disk that can be used to compute Fréchet sensitivity kernels for waveform tomography. We use the corresponding publicly available AxiSEM (www.axisem.info) open-source spectral-element code, demonstrate its excellent scalability on supercomputers, a diverse range of applications ranging from normal modes to small-scale lowermost mantle structures, tomographic models, and comparison with observed data, and discuss further avenues to pursue with this methodology.


2010 ◽  
Vol 54 (04) ◽  
pp. 268-280
Author(s):  
Dipti P. Mishra ◽  
Sukanta K. Dash ◽  
P. Anil Kishan

This paper discusses the computation of air entrainment in to the louvers of a cylindrical funnel as a result of a high-velocity isothermal air jet placed inside the funnel having different lengths of protrusion and different funnel diameters. The experimental setup consists of a cylindrical Perspex tube with circular louvers cut around it. The flow through the nozzle is measured with a rotameter, and the velocity at the cylinder outlet is measured with a hot wire anemometer. The numerical simulation is carried out by solving the conservation equations of mass and momentum for the funnel with a surrounding computational domain so that the suction can take place at the louver entry. The resulting equations have been solved numerically using finite volume technique in an unstructured grid employing eddy viscosity based two-equation k-e turbulence model of Fluent 6.3. It has been found from the experiment and the CFD computation that there exists an optimum funnel diameter for which the mass ingress into the funnel is highest, and also there exists an optimum protrusion length of the nozzle that entrains maximum air flow into the funnel. For isothermal air suction the mass ingress into the funnel does not depend on the inclination of the funnel, whereas for low velocity and high temperature of the nozzle fluid the mass ingress in to the funnel depends on the inclination of the funnel. After a critical nozzle velocity (Gr/Re2 < 0.5), the mass ingress into the funnel does not again depend on the inclination of the funnel. An approximate relation for the entrance length of a sucking pipe has also been developed from the present CFD solution. The original contribution of the paper is the setting of a computational methodology for computing various conditions of suction flow in to a funnel while having the numerical confidence by comparing the CFD result with a small-scale experimental measurement in the laboratory.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950007
Author(s):  
J. R. Wu ◽  
T. F. Gao ◽  
E. C. Shang

In this paper, an analytic range-independent reverberation model based on the first-order perturbation theory is extended to range-dependent waveguide. This model considers the effect of bottom composite roughness: small-scale bottom rough surface provides dominating energy for reverberation, whereas large-scale roughness has the effect of forward and back propagation. For slowly varying bottom and short signal pulse, analytic small-scale roughness backscattering theory is adapted in range-dependent waveguides. A parabolic equation is used to calculate Green functions in range-dependent waveguides, and the orthogonal property of local normal modes is employed to estimate the modal spectrum of PE field. Synthetic tests demonstrate that the proposed reverberation model works well, and it can also predict the reverberation of range-independent waveguide as a special case.


2010 ◽  
Vol 42 ◽  
pp. 294-298
Author(s):  
Hua Wang ◽  
Jun Li Liu ◽  
Jia Ning Zou

In this study, adding coal cinder to bottom of solar pond as a means of increasing temperature of the solar pond is presented. A series of small-scale tests are conducted in the simple mini solar ponds. These small-scale tests include the temperature evolution comparisons of this mode with other normal modes; the comparisons of the material added to LCZ and the comparisons of the different soaking times for coal cinder. In addition, a numerical calculation on predicting temperature evolution in large area of salt gradient solar pond is also given. Both of the experimental and numerical results suggest that adding porous media with low thermal diffusivity (e.g. coal cinder) could significantly increase the temperature in the vicinity of the bottom of the pond. From the view of long-term, this effect is supposed to enhance the average temperature of the solar pond.


2008 ◽  
Vol 65 (3) ◽  
pp. 766-791 ◽  
Author(s):  
K. Ngan ◽  
P. Bartello ◽  
D. N. Straub

Abstract Although it is now accepted that imbalance in the atmosphere and ocean is generic, the feedback of the unbalanced motion on the balanced flow has not received much attention. In this work the parameterization problem is examined in the context of rotating stratified turbulence, that is, with a nonhydrostatic Boussinesq model. Using the normal modes as a first approximation to the balanced and unbalanced flow, the growth of ageostrophic perturbations to the quasigeostrophic flow and the associated feedback are studied. For weak stratification, there are analogies with the three-dimensionalization of decaying 2D turbulence: the growth rate of the ageostrophic perturbation follows a linear estimate, geostrophic energy is extracted from the base flow, and the associated damping on the geostrophic base flow (the “eddy viscosity”) is peaked at large horizontal scales. For strong stratification, the transfer spectra and eddy viscosities maintain this structure if there is synoptic-scale motion and the buoyancy scale is adequately resolved. This has been confirmed for global Rossby and Froude numbers of O(0.1). Implications for atmospheric and oceanic modeling are discussed.


2018 ◽  
Vol 842 ◽  
pp. 146-162 ◽  
Author(s):  
Simon J. Illingworth ◽  
Jason P. Monty ◽  
Ivan Marusic

A dynamical systems approach is used to devise a linear estimation tool for channel flow at a friction Reynolds number of $Re_{\unicode[STIX]{x1D70F}}=1000$. The estimator uses time-resolved velocity measurements at a single wall-normal location to estimate the velocity field at other wall-normal locations (the data coming from direct numerical simulations). The estimation tool builds on the work of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) by using a Navier–Stokes-based linear model and treating any nonlinear terms as unknown forcings to an otherwise linear system. In this way nonlinearities are not ignored, but instead treated as an unknown model input. It is shown that, while the linear estimator qualitatively reproduces large-scale flow features, it tends to overpredict the amplitude of velocity fluctuations – particularly for structures that are long in the streamwise direction and thin in the spanwise direction. An alternative linear model is therefore formed in which a simple eddy viscosity is used to model the influence of the small-scale turbulent fluctuations on the large scales of interest. This modification improves the estimator performance significantly. Importantly, as well as improving the performance of the estimator, the linear model with eddy viscosity is also able to predict with reasonable accuracy the range of wavenumber pairs and the range of wall-normal heights over which the estimator will perform well.


2021 ◽  
Author(s):  
Rajat Punia ◽  
Gaurav Goel

ABSTRACTPrediction of ligand-induced protein conformational transitions is a challenging task due to a large and rugged conformational space, and limited knowledge of probable direction(s) of structure change. These transitions can involve a large scale, global (at the level of entire protein molecule) structural change and occur on a timescale of milliseconds to seconds, rendering application of conventional molecular dynamics simulations prohibitive even for small proteins. We have developed a computational protocol to efficiently and accurately predict these ligand-induced structure transitions solely from the knowledge of protein apo structure and ligand binding site. Our method involves a series of small scale conformational change steps, where at each step linear response theory is used to predict the direction of small scale global response to ligand binding in the protein conformational space (dLRT) followed by construction of a linear combination of slow (low frequency) normal modes (calculated for the structure from the previous step) that best overlaps with dLRT. Protein structure is evolved along this direction using molecular dynamics with excited normal modes (MDeNM) wherein excitation energy along each normal mode is determined by excitation temperature, mode frequency, and its overlap with dLRT. We show that excitation temperature (ΔT) is a very important parameter that allows limiting the extent of structural change in any one step and develop a protocol for automated determination of its optimal value at each step. We have tested our protocol for three protein–ligand systems, namely, adenylate Kinase – di(adenosine-5’)pentaphosphate, ribose binding protein – β-D-ribopyranose, and DNA β-glucosyltransferase – uridine-5’-diphosphate, that incorporate important differences in type and range of structural changes upon ligand binding. We obtain very accurate prediction for not only the structure of final protein–ligand complex (holo-structure) having a large scale conformational change, but also for biologically relevant intermediates between the apo and the holo structures. Moreover, most relevant set of normal modes for conformational change at each step are an output from our method, which can be used as collective variables for determination of free energy barriers and transition timescales along the identified pathway.


2009 ◽  
Vol 39 (11) ◽  
pp. 2893-2909 ◽  
Author(s):  
Wilbert Weijer ◽  
Sarah T. Gille ◽  
Frédéric Vivier

Abstract The barotropic intraseasonal variability in the Australia–Antarctic Basin (AAB) is studied in terms of the excitation and decay of topographically trapped barotropic modes. The main objective is to reconcile two widely differing estimates of the decay rate of sea surface height (SSH) anomalies in the AAB that are assumed to be related to barotropic modes. First, an empirical orthogonal function (EOF) analysis is applied to almost 15 years of altimeter data. The analysis suggests that several modes are involved in the variability of the AAB, each related to distinct areas with (almost) closed contours of potential vorticity. Second, the dominant normal modes of the AAB are determined in a barotropic shallow-water (SW) model. These stationary modes are confined by the closed contours of potential vorticity that surround the eastern AAB, and the crest of the Southeast Indian Ridge. For reasonable values of horizontal eddy viscosity and bottom friction, their decay time scale is on the order of several weeks. Third, the SW model is forced with realistic winds and integrated for several years. Projection of the modal velocity patterns onto the output fields shows that the barotropic modes are indeed excited in the model, and that they decay slowly on the frictional 𝒪(3 weeks) time scale. However, the SSH anomalies in the modal areas display rapid 𝒪(4 days) decay. Additional analysis shows that this rapid decay reflects the adjustment of unbalanced flow components through the emission of Rossby waves. Resonant excitation of the dominant free modes accounts for about 20% of the SSH variability in the forced-model run. Other mechanisms are suggested to explain the region of high SSH variability in the AAB.


2001 ◽  
Vol 444 ◽  
pp. 223-256 ◽  
Author(s):  
MATHIEU CALLENAERE ◽  
JEAN-PIERRE FRANC ◽  
JEAN-MARIE MICHEL ◽  
MICHEL RIONDET

The instability of a partial cavity induced by the development of a re-entrant jet is investigated on the basis of experiments conducted on a diverging step. Detailed visualizations of the cavity behaviour allowed us to identify the domain of the re-entrant jet instability which leads to classical cloud cavitation. The surrounding regimes are also investigated, in particular the special case of thin cavities which do not oscillate in length but surprisingly exhibit a re-entrant jet of periodical behaviour. The velocity of the re-entrant jet is measured from visualizations, in the case of both cloud cavitation and thin cavities. The limits of the domain of the re-entrant jet instability are corroborated by velocity fluctuation measurements. By varying the divergence and the confinement of the channel, it is shown that the extent of the auto-oscillation domain primarily depends upon the average adverse pressure gradient in the channel. This conclusion is corroborated by the determination of the pressure gradient on the basis of LDV measurements which shows a good correlation between the domain of the cloud cavitation instability and the region of high adverse pressure gradient. A simple phenomenological model of the development of the re-entrant jet in an adverse pressure gradient confirms the strong influence of the pressure gradient on the development of the re-entrant jet and particularly on its thickness. An ultrasonic technique is developed to measure the re-entrant jet thickness, which allowed us to compare it with the cavity thickness. By considering an estimate of the characteristic height of the perturbations developing on the interface of the cavity and of the re-entrant jet, it is shown that cloud cavitation requires negligible interaction between both interfaces, i.e. a thick enough cavity. In the case of thin cavities, this interaction becomes predominant; the cavity interface breaks at many points, giving birth to small-scale vapour structures unlike the large-scale clouds which are periodically shed in the case of cloud cavitation. The low-frequency content of the cloud cavitation instability is investigated using spectral analysis of wall pressure signals. It is shown that the characteristic frequency of cloud cavitation corresponds to a Strouhal number of about 0.2 whatever the operating conditions and the cavity length may be, provided the Strouhal number is computed on the basis of the maximum cavity length. For long enough cavities, another peak is observed in the spectra, at lower frequency, which is interpreted as a surge-type instability. The present investigations give insight into the instabilities that a partial cavity may undergo, and particularly the re-entrant jet instability. Two parameters are shown to be of most importance in the analysis of the re-entrant jet instability: the adverse pressure gradient and the cavity thickness compared to the re-entrant jet thickness. The present results allowed us to conduct a qualitative phenomenological analysis of the stability of partial cavities on cavitating hydrofoils. It is conjectured that cloud cavitation should occur for short enough cavities, of the order of half the chordlength, whereas the instability often observed at the limit between partial cavitation and super-cavitation is here interpreted as a cavitation surge-type instability.


2021 ◽  
Vol 927 ◽  
Author(s):  
A. Cimarelli ◽  
G. Boga

Numerical experiments on the turbulent entrainment and mixing of scalars in a incompressible flow have been performed. These simulations are based on a scale decomposition of the velocity field, thus allowing the establishment from a dynamic point of view of the evolution of scalar fields under the separate action of large-scale coherent motions and small-scale fluctuations. The turbulent spectrum can be split into active and inactive flow structures. The large-scale engulfment phenomena actively prescribe the mixing velocity by amplifying inertial fluxes and by setting the area and the fluctuating geometry of the scalar interface. On the contrary, small-scale isotropic nibbling phenomena are essentially inactive in the mixing process. It is found that the inertial mechanisms initiate the process of entrainment at large scales to be finally processed by scalar diffusion at the molecular level. This last stage does not prescribe the amount of mixing but adapts itself to the conditions imposed by the coherent anisotropic motion at large scales. The present results may have strong repercussions for the theoretical approach to scalar mixing, as anticipated here by simple heuristic arguments which are shown able to reveal the rich dynamics of the process. Interesting repercussions are also envisaged for turbulence closures, in particular for large-eddy simulation approaches where only the large scales of the velocity field are resolved.


Sign in / Sign up

Export Citation Format

Share Document