intravenous vitamin
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 94)

H-INDEX

24
(FIVE YEARS 5)

Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Sun-Young Jung ◽  
Min-Taek Lee ◽  
Moon Seong Baek ◽  
Won-Young Kim

Abstract Background Previous randomized trials of vitamin C, hydrocortisone, and thiamine on sepsis were limited by short-term vitamin C administration, heterogeneous populations, and the failure to evaluate each component’s effect. The purpose of this study was to determine whether vitamin C alone for ≥ 5 days or in combination with corticosteroids and/or thiamine was associated with decreased mortality across the sepsis population and subpopulation. Methods Nationwide population-based study conducted using the Korean National Health Insurance Service database. A total of 384,282 adult patients with sepsis who were admitted to the intensive care unit were enrolled from January 2017 to December 2019. The primary outcome was hospital mortality, while the key secondary outcome was 90-day mortality. Results The mean [standard deviation] age was 69.0 [15.4] years; 57% were male; and 36,327 (9%) and 347,955 did and did not receive vitamin C, respectively. After propensity score matching, each group involved 36,327 patients. The hospital mortality was lower by − 0.9% in the treatment group (17.1% vs 18.0%; 95% confidence interval, − 1.3 to − 0.5%; p < 0.001), a significant but extremely small difference. However, mortality decreased greater in patients who received vitamin C for ≥ 5 days (vs 1–2 or 3–4 days) (15.8% vs 18.8% vs 18.3%; p < 0.001). Further, vitamin C was associated with a lower hospital mortality in patients with older age, multiple comorbidities, pneumonia, genitourinary infection, septic shock, and mechanical ventilation. Consistent findings were found for 90-day mortality. Moreover, vitamin C alone or in combination with thiamine was significantly associated with decreased hospital mortality. Conclusions Intravenous vitamin C of ≥ 5 days was significantly associated with decreased hospital and 90-day mortality in sepsis patients. Vitamin C combined with corticosteroids and/or thiamine in specific sepsis subgroups warrants further study.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Bing Zhao ◽  
Meng-Jiao Li ◽  
Yun Ling ◽  
Yi-Bing Peng ◽  
Jun Huang ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1341
Author(s):  
Jorge R. Miranda-Massari ◽  
Alondra P. Toro ◽  
Doris Loh ◽  
Jose R. Rodriguez ◽  
Raul Morales Borges ◽  
...  

Currently available anti-viral drugs may be useful in reducing the viral load but are not providing the necessary physiological effects to reduce the SARS-CoV-2 complications efficiently. Treatments that provide better clinical outcomes are urgently needed. Vitamin C (ascorbic acid, AA) is an essential nutrient with many biological roles that have been proven to play an important part in immune function; it serves as an antioxidant, an anti-viral, and exerts anti-thrombotic effects among many other physiological benefits. Research has proven that AA at pharmacological doses can be beneficial to patients with acute respiratory distress syndrome (ARDS) and other respiratory illnesses, including sepsis. In addition, High-Dose Intravenous Vitamin C (HDIVC) has proven to be effective in patients with different viral diseases, such as influenza, chikungunya, Zika, and dengue. Moreover, HDIVC has been demonstrated to be very safe. Regarding COVID-19, vitamin C can suppress the cytokine storm, reduce thrombotic complications, and diminish alveolar and vascular damage, among other benefits. Due to these reasons, the use of HDIVC should be seriously considered in complicated COVID-19 patients. In this article, we will emphasize vitamin C’s multiple roles in the most prominent pathophysiological processes presented by the COVID-19 disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Noha A. Kamel ◽  
Moetaza M. Soliman ◽  
Maha A. Abo-Zeid ◽  
Mona I. Shaaban

Background: Sepsis development in patients with trauma is associated with bad prognosis. This study investigated the effect of immunomodulatory interventions in major trauma patients at high risk for sepsis.Methods: In a randomized, double-blinded, controlled design, severe trauma patients were stratified by leukocyte anti-sedimentation rate (LAR) test into high risk (HR) and low risk (LR) for sepsis. The HR patients were randomly allocated into intravenous vitamin C plus vitamin B1 (HR-CB), intramuscular vitamin D plus oral Lactobacillus probiotics (HR-DP), or control (HR-C) groups. The clinical trial was registered at clinicaltrials.gov (https://clinicaltrials.gov/show/NCT04216459).Outcomes: The primary outcome was Acute Physiologic Assessment and Chronic Health Evaluation score II (APACHE II) score. Secondary outcomes included sepsis incidence, changes in Sequential Organ Failure Assessment (SOFA) score, and serum monocyte chemoattractant protein-1 (MCP-1) on day 6 from baseline, 28-day mortality, intensive care unit (ICU), and hospital discharge.Results: The HR-DP, HR-CB, and LR groups showed a significantly lower incidence of sepsis development (20%, 20%, and 16%, respectively, versus 60% in the HR-C group, p-value = 0.004). The three groups also showed a significant improvement in APACHE II and SOFA scores. Besides, MCP-1 levels were significantly decreased in HR-DP and HR-CB groups compared to the HR-C group (p-value ≤ 0.05). Significantly decreased mortality (10% and 16% versus 60% in the HR-C group) and increased ICU discharge (95% and 84% versus 45% in the HR-C group) were observed in HR-CB and LR groups (p-value = 0.001).Conclusion: Both combinations of interventions improved APACHE II scores and reduced sepsis incidence in trauma patients. The LAR combined with injury severity score were good sepsis predictors.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Thomas R. McCune ◽  
Angela J. Toepp ◽  
Brynn E. Sheehan ◽  
Muhammad Shaheer K. Sherani ◽  
Stephen T. Petr ◽  
...  

Abstract Background The effects of vitamin C on clinical outcomes in critically ill patients remain controversial due to inconclusive studies. This retrospective observational cohort study evaluated the effects of vitamin C therapy on acute kidney injury (AKI) and mortality among septic patients. Methods Electronic medical records of 1390 patients from an academic hospital who were categorized as Treatment (received at least one dose of 1.5 g IV vitamin C, n = 212) or Comparison (received no, or less than 1.5 g IV vitamin C, n = 1178) were reviewed. Propensity score matching was conducted to balance a number of covariates between groups. Multivariate logistic regressions were conducted predicting AKI and in-hospital mortality among the full sample and a sub-sample of patients seen in the ICU. Results Data revealed that vitamin C therapy was associated with increases in AKI (OR = 2.07 95% CI [1.46–2.93]) and in-hospital mortality (OR = 1.67 95% CI [1.003–2.78]) after adjusting for demographic and clinical covariates. When stratified to examine ICU patients, vitamin C therapy remained a significant risk factor of AKI (OR = 1.61 95% CI [1.09–2.39]) and provided no protective benefit against mortality (OR = 0.79 95% CI [0.48–1.31]). Conclusion Ongoing use of high dose vitamin C in sepsis should be appraised due to observed associations with AKI and death.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1166
Author(s):  
Patrick Holford ◽  
Anitra C. Carr ◽  
Masuma Zawari ◽  
Marcela P. Vizcaychipi

Severe respiratory infections are characterized by elevated inflammation and generation of reactive oxygen species (ROS) which may lead to a decrease in antioxidants such as vitamin C and a higher requirement for the vitamin. Administration of intravenous vitamin C to patients with pneumonia and sepsis appears to decrease the severity of the disease and potentially improve survival rate. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes pneumonia, sepsis and acute respiratory distress syndrome (ARDS) in severe cases, and is referred to as coronavirus disease 2019 (COVID-19). Patients with COVID-19 infection also appear to have depleted vitamin C status and require additional supplementation of vitamin C during the acute phase of the disease. To date there have been 12 vitamin C and COVID-19 trials published, including five randomised controlled trials (RCTs) and seven retrospective cohort studies. The current level of evidence from the RCTs suggests that intravenous vitamin C intervention may improve oxygenation parameters, reduce inflammatory markers, decrease days in hospital and reduce mortality, particularly in the more severely ill patients. High doses of oral vitamin C supplementation may also improve the rate of recovery in less severe cases. No adverse events have been reported in published vitamin C clinical trials in COVID-19 patients. Upcoming findings from larger RCTs will provide additional evidence on vitamin supplementation in COVID-19 patients.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3564
Author(s):  
Dhan Bahadur Shrestha ◽  
Pravash Budhathoki ◽  
Yub Raj Sedhai ◽  
Sujit Kumar Mandal ◽  
Shreeja Shikhrakar ◽  
...  

Background: Vitamin C is a water-soluble antioxidant vitamin. Oxidative stress and its markers, along with inflammatory markers, are high during critical illness. Due to conflicting results of the published literature regarding the efficacy of vitamin C in critically ill patients, and especially the concerns for nephrotoxicity raised by some case reports, this meta-analysis was carried out to appraise the evidence and affirmation regarding the role of vitamin C in critically ill patients. Methods: We searched the database thoroughly to collect relevant studies that assessed intravenous vitamin C use in critically ill patients published until 25 February 2021. We included randomized controlled trials and observational studies with 20 or more critically ill patients who have received intravenous ascorbic acid (vitamin C). After screening 18,312 studies from different databases, 53 were included in our narrative synthesis, and 48 were included in the meta-analysis. We used the Covidence software for screening of the retrieved literature. Review Manager (RevMan) 5.4 was used for the pooling of data and Odds Ratios (OR) and Mean difference (MD) as measures of effects with a 95% confidence interval to assess for explanatory variables. Results: Pooling data from 33 studies for overall hospital mortality outcomes using a random-effect model showed a 19% reduction in odds of mortality among the vitamin C group (OR, 0.81; 95% CI, 0.66–0.98). Length of hospital stay (LOS), mortality at 28/30 days, ICU mortality, new-onset AKI and Renal Replacement Therapy (RRT) for AKI did not differ significantly across the two groups. Analysis of data from 30 studies reporting ICU stay disclosed 0.76 fewer ICU days in the vitamin C group than the placebo/standard of care (SOC) group (95% CI, −1.34 to −0.19). This significance for shortening ICU stay persisted even when considering RCTs only in the analysis (MD, −0.70; 95% CI, −1.39 to −0.02). Conclusion: Treatment of critically ill patients with intravenous vitamin C was relatively safe with no significant difference in adverse renal events and decreased in-hospital mortality. The use of vitamin C showed a significant reduction in the length of ICU stays in critically ill patients.


Sign in / Sign up

Export Citation Format

Share Document