abomasal infusion
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 12)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Sanne van Gastelen ◽  
Jan Dijkstra ◽  
Sven J.J. Alferink ◽  
Gisabeth Binnendijk ◽  
Kelly Nichols ◽  
...  

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 13-14
Author(s):  
Danielle Coleman ◽  
Mario Vailati Riboni ◽  
R Pate ◽  
M Miura ◽  
N D Luchini ◽  
...  

Abstract Our research examined the effects of enhancing methyl donor supply on immunometabolism during periods of negative nutrient balance (NNB) or heat stress (HS). The first experiment examined the effects of post-ruminal choline supply during NNB on production and pathways of 1-carbon metabolism. Ten primiparous rumen-cannulated cows (158±24 DIM) were used in a replicated 5×5 Latin square design with 4d treatment periods and 10d of recovery. Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements) with abomasal infusion of water or R plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected at the end of each treatment period. Enhancing choline supply increased milk yields, but decreased liver triacylglycerol. Activity of betaine homocysteine methyltransferase increased with choline, while methionine synthase tended to increase, and cystathionine β-synthase was decreased. These changes were associated with increased liver and plasma Met. Overall, enhanced supply of choline during NNB increases flux through the Met cycle to regenerate Met and reduce liver triacylglycerol. The second experiment examined the effects of rumen-protected Met (RPM) during HS on mTOR (mechanistic target of rapamycin)-related signaling proteins in the mammary gland. Thirty-two multiparous cows (184±59 DIM) were assigned to an environmental treatment, and a dietary treatment [TMR with RPM (0.105% DM) or without (CON)] in a crossover design. There were 2 periods with 2 phases per period. In phase 1 (9d), all cows were in thermoneutral conditions (TN) and fed ad libitum. During phase 2 (9d), group 1 (n=16) was exposed to HS using electric heat blankets while group 2 (n=16) remained in TN but were pair-fed to HS counterparts. After a washout period (21d), the study was repeated (period 2), with environmental treatments being inverted and dietary treatments remaining the same. Mammary tissue was collected at the end of phase 2. Abundance of phosphorylated mTOR was greater with RPM and tended to be greater with HS. Control cows had a greater decrease in milk protein (%) during phase 2 (difference from phase 1) compared with RPM cows, suggesting that RPM supplementation during HS may support greater milk protein synthesis via mTOR activation. The third experiment investigated the effects of RPM during HS on the response of mammary gland explants to lipopolysaccharide (LPS). Twenty-five mg of tissue obtained from cows in the second experiment was incubated with 0 or 3 μg/mL of LPS for 2h. Incubation with LPS increased abundance of genes associated with inflammation, while HS decreased genes associated with antioxidant responses. Expression of NFKB1was greater in LPS-treated explants from non-HS compared with HS cows. These data indicate that HS reduced immune and antioxidant responses while RPM did not attenuate the inflammatory response induced by LPS in vitro. Overall, data indicated a beneficial effect of choline during NNB and Met during HS on immunometabolism in dairy cows.


2020 ◽  
Vol 98 (9) ◽  
Author(s):  
Hannah F Speer ◽  
Kimberly A Pearl ◽  
Evan C Titgemeyer

Abstract This study assessed the relative bioavailability of guanidinoacetic acid (GAA) in cattle. Seven ruminally cannulated Holstein steers (initial body weight of 280 kg) were used in an experiment with a 5 × 5 Latin square design; the two additional steers received a treatment sequence identical to two steers in the Latin square. Treatments were: control (no GAA, water infusion), ruminal infusion of 10 or 20 g/d GAA, and abomasal infusion of 10 or 20 g/d GAA, with all infusions delivered continuously. Periods were 7 d in length, and on day 7, blood and urine samples were collected to determine the concentrations of GAA and its associated metabolites. Plasma creatine concentrations increased linearly (P < 0.01) with GAA infusion to the abomasum and tended to increase linearly (P = 0.06) when GAA was infused ruminally. Urinary creatine concentrations increased linearly with increasing amounts of GAA infused in the abomasum (P < 0.01) and the rumen (P < 0.05). There were no significant effects of GAA infusion to either the abomasum or rumen on plasma or urinary concentrations of GAA. Plasma creatinine concentrations were not affected by GAA infusion to the abomasum or rumen. Urinary creatinine concentrations decreased when GAA was infused abomasally (P < 0.05). Because plasma and urinary creatine concentrations yielded the statistically strongest linear responses, they were selected as the primary response criteria for quantifying ruminal escape of GAA. Calculated by slope-ratio methodology, estimates for the ruminal escape of GAA based on plasma creatine and urinary creatine concentrations were 47% and 49%, respectively. Ruminally infused GAA was about half as effective as abomasally infused GAA in elevating plasma and urinary concentrations of creatine.


2020 ◽  
Vol 124 (11) ◽  
pp. 1166-1178
Author(s):  
Cristhiane V. R. de Oliveira ◽  
Tadeu E. Silva ◽  
Erick D. Batista ◽  
Luciana N. Rennó ◽  
Fabyano F. Silva ◽  
...  

AbstractWe evaluated the differences between the supplementation of urea in rumen and/or abomasum on forage digestion, N metabolism and urea kinetics in cattle fed a low-quality tropical forage. Five Nellore heifers were fitted with rumen and abomasum fistulas and assigned to a Latin square design. The treatments were control, continuous infusion of urea in the abomasum (AC), continuous infusion of urea in the rumen, a pulse dose of urea in the rumen every 12 h (PR) and a combination of PR and AC. The control exhibited the lowest (P < 0·10) faecal and urinary N losses, which were, overall, increased by supplementation. The highest urinary N losses (P < 0·10) were observed when urea was either totally or partially supplied as a ruminal pulse dose. The rumen N balance was negative for the control and when urea was totally supplied in the abomasum. The greatest microbial N production (P < 0·10) was obtained when urea was partially or totally supplied in the abomasum. Urea supplementation increased (P < 0·10) the amount of urea recycled to the gastrointestinal tract and the amount of urea-N returned to the ornithine cycle. The greatest (P < 0·10) amounts of urea-N used for anabolism were observed when urea was totally and continuously infused in the abomasum. The continuous abomasal infusion also resulted in the highest (P < 0·10) assimilation of microbial N from recycling. The continuous releasing of urea throughout day either in the rumen or abomasum is able to improve N accretion in the animal body, despite mechanism responsible for that being different.


Sign in / Sign up

Export Citation Format

Share Document