scholarly journals Investigation on computed pressures from PIV, a study of how boundary definitions affect pressure accuracy along objects on the example of a cylinder flow.

Author(s):  
Francisco Felis-Carrasco ◽  
David Hess ◽  
Bo Beltoft Watz ◽  
Miguel Alfonso Mendez

This work discusses an approach to compute pressure fields from planar PIV measurement using standard CFD tools. In particular, we propose a combination of interpolation and mesh adaptation to import the PIV measurements on a grid that is morphed around objects, and is fine enough to solve the Poisson equation accurately. The whole process of meshing, interpolation and pressure computation is carried out using the popular open-source solver OpenFoam®. The method is tested and validated on a classic benchmark test case, namely, the unsteady flow past a cylinder. A 3D multiphase flow simulation is used to generate the reference data and analyze the impact of both, the PIV interrogation and the interpolation on the morphed grid. The simulation uses an Euler-Lagrangian one-way coupling approach to simulate the flow field and the dynamics of seeding particles. The analysis compares the pressure field from the 3D CFD simulation with the solution of a 2D Poisson equation based on the 2D velocity field obtained by either down-sampling the CFD data or by PIV interrogation of synthetic images built from the CFD data. Finally, we challenge the proposed method with the pressure reconstruction in a TR-PIV experiment in similar conditions.

Author(s):  
Xiaofeng Yang ◽  
Seunghwan Keum ◽  
Tang-wei Kuo

In Computational Fluid Dynamics (CFD) simulations of internal combustion engines, one of the critical modeling parameters is the valve setup. A standard workaround is to keep the valve opens at a certain clearance (minimum valve lift), while imposing a solid boundary to mimic valve closure. This method would yield a step change in valve lift during opening and closing event, and different valve event timing than hardware. Two parametric studies were performed to examine a) the effect of the minimum valve lift and b) the effect of grid resolution at the minimum valve lift on predicted in-cylinder flow fields in Reynolds Averaged Navier-Stokes (RANS) simulations. The simulation results were compared with the state-of-art PIV measurement from a two-valve transparent combustion chamber (TCC-3) engine. The comparisons revealed that the accuracy of flow simulation are sensitive to the choice of minimum valve lift and grid resolution in the valve seat region. In particular, the predicted in-cylinder flow field during the intake process was found to be very sensitive to the valve setup. A best practice CFD valve setup strategy is proposed as a result of this parametric studies. The proposed CFD valve setup was applied to Large Eddy Simulation (LES) of TCC-3 engine and preliminary results showed noticeable improvement already. Further evaluation of the valve setup strategy for LES simulations is on-going and will be reported in a separate report.


Author(s):  
Xiaofeng Yang ◽  
Seunghwan Keum ◽  
Tang-Wei Kuo

In computational fluid dynamics (CFD) simulations of internal combustion engines, one of the critical modeling parameters is the valve setup. A standard workaround is to keep the valve opens at a certain clearance (minimum valve lift), while imposing a solid boundary to mimic valve closure. This method would yield a step change in valve lift during opening and closing event, and different valve event timing than hardware. Two parametric studies were performed to examine (a) the effect of the minimum valve lift and (b) the effect of grid resolution at the minimum valve lift on predicted in-cylinder flow fields in Reynolds-averaged Navier–Stokes (RANS) simulations. The simulation results were compared with the state-of-the-art particle image velocimetry (PIV) measurement from a two-valve transparent combustion chamber (TCC-3) engine. The comparisons revealed that the accuracy of flow simulation is sensitive to the choice of minimum valve lift and grid resolution in the valve seat region. In particular, the predicted in-cylinder flow field during the intake process was found to be very sensitive to the valve setup. A best practice CFD valve setup strategy is proposed as a result of these parametric studies. The proposed CFD valve setup was applied to large eddy simulation (LES) of TCC-3 engine and preliminary results showed noticeable improvement already. Further evaluation of the valve setup strategy for LES simulations is ongoing and will be reported in a separate report.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 54-63 ◽  
Author(s):  
Baohong Lu ◽  
Huanghe Gu ◽  
Ziyin Xie ◽  
Jiufu Liu ◽  
Lejun Ma ◽  
...  

Stochastic simulation is widely applied for estimating the design flood of various hydrosystems. The design flood at a reservoir site should consider the impact of upstream reservoirs, along with any development of hydropower. This paper investigates and applies a stochastic simulation approach for determining the design flood of a complex cascade of reservoirs in the Longtan watershed, southern China. The magnitude of the design flood when the impact of the upstream reservoirs is considered is less than that without considering them. In particular, the stochastic simulation model takes into account both systematic and historical flood records. As the reliability of the frequency analysis increases with more representative samples, it is desirable to incorporate historical flood records, if available, into the stochastic simulation model. This study shows that the design values from the stochastic simulation method with historical flood records are higher than those without historical flood records. The paper demonstrates the advantages of adopting a stochastic flow simulation approach to address design-flood-related issues for a complex cascade reservoir system.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Ting Liu ◽  
Gabriel Lodewijks

Abstract Abstract On the basis of the influence of dry season on ship traffic flow, the gathering and dissipating process of ship traffic flow was researched with Greenshields linear flow—density relationship model, the intrinsic relationship between the ship traffic congestion state and traffic wave in the unclosed restricted channel segment was emphatically explored when the ship traffic flow in a tributary channel inflows, and the influence law of multiple traffic waves on the ship traffic flow characteristics in unclosed restricted segment is revealed. On this basis, the expressions of traffic wave speed and direction, dissipation time of queued ships and the number of ships affected were provided, and combined with Monte Carlo method, the ship traffic flow simulation model in the restricted channel segment was built. The simulation results show that in closed restricted channel segment the dissipation time of ships queued is mainly related to the ship traffic flow rate of segments A and C, and the total number of ships affected to the ship traffic flow rate of segment A. And in unclosed restricted channel segment, the dissipation time and the total number of ships affected are also determined by the meeting time of the traffic waves in addition to the ship traffic flow rate of segments. The research results can provide the theoretical support for further studying the ship traffic flow in unclosed restricted channel segment with multiple tributaries Article Highlights The inflow of tributaries' ship traffic flows has an obvious impact on the traffic conditions in the unenclosed restricted channel segment. The interaction and influence between multiple ship traffic waves and the mechanism of generating new traffic waves are explained. The expression of both dissipation time of queued ships and the total number of ships affected in the closed and unclosed restricted channel segment are given.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1432
Author(s):  
Xwégnon Ghislain Agoua ◽  
Robin Girard ◽  
Georges Kariniotakis

The efficient integration of photovoltaic (PV) production in energy systems is conditioned by the capacity to anticipate its variability, that is, the capacity to provide accurate forecasts. From the classical forecasting methods in the state of the art dealing with a single power plant, the focus has moved in recent years to spatio-temporal approaches, where geographically dispersed data are used as input to improve forecasts of a site for the horizons up to 6 h ahead. These spatio-temporal approaches provide different performances according to the data sources available but the question of the impact of each source on the actual forecasting performance is still not evaluated. In this paper, we propose a flexible spatio-temporal model to generate PV production forecasts for horizons up to 6 h ahead and we use this model to evaluate the effect of different spatial and temporal data sources on the accuracy of the forecasts. The sources considered are measurements from neighboring PV plants, local meteorological stations, Numerical Weather Predictions, and satellite images. The evaluation of the performance is carried out using a real-world test case featuring a high number of 136 PV plants. The forecasting error has been evaluated for each data source using the Mean Absolute Error and Root Mean Square Error. The results show that neighboring PV plants help to achieve around 10% reduction in forecasting error for the first three hours, followed by satellite images which help to gain an additional 3% all over the horizons up to 6 h ahead. The NWP data show no improvement for horizons up to 6 h but is essential for greater horizons.


Author(s):  
Pham Thu Huong ◽  
Jacob Cherian ◽  
Nguyen Thi Hien ◽  
Muhammad Safdar Sial ◽  
Sarminah Samad ◽  
...  

The present study aims to determine the impact of green innovation (GI) on the overall performance of an organization while keeping the variable of environmental management (EM) as a moderator. We used a dataset consisting of four data years, from 2014 to 2017, of A-share companies listed on the Shanghai Stock Exchange (SSE). The concept of green innovation refers to the use of advancements in technology that enable savings in energy, along with the recycling of waste material. When advanced technology is utilized in the production process, the products are referred to as green products and the whole process of adopting such technologies and product design is referred to as “Corporate Environmental Management”. Such innovations improve the overall financial performance of companies as it enables them to improve their social image by reducing their carbon footprint and ensures their long-term sustainability. The main issue is the limited focus and attention given to the topic, from the perspective of companies. This research focuses on the impact of green innovation and the importance of environmental management for the sustainability of companies. Our findings suggest that the relationship between green innovation and the performance of the company is positive and verifies the existence of moderating effects of environmental management on the relationship between green innovation and firm performance. Implications are given to academia and practitioners.


2007 ◽  
Vol 30 (7) ◽  
pp. 640-648 ◽  
Author(s):  
R. Kaminsky ◽  
K. Dumont ◽  
H. Weber ◽  
M. Schroll ◽  
P. Verdonck

The aim of this study was to validate the 2D computational fluid dynamics (CFD) results of a moving heart valve based on a fluid-structure interaction (FSI) algorithm with experimental measurements. Firstly, a pulsatile laminar flow through a monoleaflet valve model with a stiff leaflet was visualized by means of Particle Image Velocimetry (PIV). The inflow data sets were applied to a CFD simulation including blood-leaflet interaction. The measurement section with a fixed leaflet was enclosed into a standard mock loop in series with a Harvard Apparatus Pulsatile Blood Pump, a compliance chamber and a reservoir. Standard 2D PIV measurements were made at a frequency of 60 bpm. Average velocity magnitude results of 36 phase-locked measurements were evaluated at every 10° of the pump cycle. For the CFD flow simulation, a commercially available package from Fluent Inc. was used in combination with in-house developed FSI code based on the Arbitrary Lagrangian-Eulerian (ALE) method. Then the CFD code was applied to the leaflet to quantify the shear stress on it. Generally, the CFD results are in agreement with the PIV evaluated data in major flow regions, thereby validating the FSI simulation of a monoleaflet valve with a flexible leaflet. The applicability of the new CFD code for quantifying the shear stress on a flexible leaflet is thus demonstrated. (Int J Artif Organs 2007; 30: 640–8)


1992 ◽  
Vol 114 (1) ◽  
pp. 79-90 ◽  
Author(s):  
O. P. Sharma ◽  
G. F. Pickett ◽  
R. H. Ni

The impacts of unsteady flow research activities on flow simulation methods used in the turbine design process are assessed. Results from experimental investigations that identify the impact of periodic unsteadiness on the time-averaged flows in turbines and results from numerical simulations obtained by using three-dimensional unsteady Computational Fluid Dynamics (CFD) codes indicate that some of the unsteady flow features can be fairly accurately predicted. Flow parameters that can be modeled with existing steady CFD codes are distinguished from those that require unsteady codes.


2013 ◽  
Vol 834-836 ◽  
pp. 2045-2048
Author(s):  
Xiao Ning Qu

The Environmental performance auditing is one professional audit that auditing the environmental performance of engineering project. We construct a multi-level auditing network in the whole process of project. That network can be divided into government audit, social audit and internal audit. And with which we predict, evaluate and control the impact on environmental effectively.


Sign in / Sign up

Export Citation Format

Share Document