scholarly journals Estimation the state of the Covid-19 epidemic curve in Mayotte

Author(s):  
Solym Mawaki MANOU-ABI ◽  
Yousri SLAOUI ◽  
Julien BALICCHI

We study in this work some statistical methods to estimate the parameters resulting from the use of an age-structured contact mathematical epidemic model in order to analyze the evolution of the epidemic curve of Covid-19 in the French overseas department Mayotte from march 13, 2020 to february 26,2021. Using several statistic methods based on time dependent method, maximum likelihood, mixture method, we fit the probability distribution which underlines the serial interval distribution and we give an adapted version of the generation time distribution from Package R0. The best-fit model of the serial interval was given by a mixture of Weibull distribution. Furthermore this estimation allows to obtain the evolution of the time varying effective reproduction number and hence the temporal transmission rates. Finally based on others known estimates parameters we incorporate the estimated parameters in the model in order to give an approximation of the epidemic curve in Mayotte under the conditions of the model. We also discuss the limit of our study and the conclusion concerned a probable impact of non pharmacological interventions of the Covid-19 in Mayotte such us the re-infection cases and the introduction of the variants which probably affect the estimates.

2020 ◽  
Vol 148 ◽  
Author(s):  
A. Khosravi ◽  
R. Chaman ◽  
M. Rohani-Rasaf ◽  
F. Zare ◽  
S. Mehravaran ◽  
...  

Abstract The aim of this study was to estimate the basic reproduction number (R0) of COVID-19 in the early stage of the epidemic and predict the expected number of new cases in Shahroud in Northeastern Iran. The R0 of COVID-19 was estimated using the serial interval distribution and the number of incidence cases. The 30-day probable incidence and cumulative incidence were predicted using the assumption that daily incidence follows a Poisson distribution determined by daily infectiousness. Data analysis was done using ‘earlyR’ and ‘projections’ packages in R software. The maximum-likelihood value of R0 was 2.7 (95% confidence interval (CI): 2.1−3.4) for the COVID-19 epidemic in the early 14 days and decreased to 1.13 (95% CI 1.03–1.25) by the end of day 42. The expected average number of new cases in Shahroud was 9.0 ± 3.8 cases/day, which means an estimated total of 271 (95% CI: 178–383) new cases for the period between 02 April to 03 May 2020. By day 67 (27 April), the effective reproduction number (Rt), which had a descending trend and was around 1, reduced to 0.70. Based on the Rt for the last 21 days (days 46–67 of the epidemic), the prediction for 27 April to 26 May is a mean daily cases of 2.9 ± 2.0 with 87 (48–136) new cases. In order to maintain R below 1, we strongly recommend enforcing and continuing the current preventive measures, restricting travel and providing screening tests for a larger proportion of the population.


Author(s):  
Chong You ◽  
Yuhao Deng ◽  
Wenjie Hu ◽  
Jiarui Sun ◽  
Qiushi Lin ◽  
...  

BackgroundThe 2019-nCoV outbreak in Wuhan, China has attracted world-wide attention. As of February 11, 2020, a total of 44730 cases of novel coronavirus-infected pneumonia associated with COVID-19 were confirmed by the National Health Commission of China.MethodsThree approaches, namely Poisson likelihood-based method (ML), exponential growth rate-based method (EGR) and stochastic Susceptible-Infected-Removed dynamic model-based method (SIR), were implemented to estimate the basic and controlled reproduction numbers.ResultsA total of 71 chains of transmission together with dates of symptoms onset and 67 dates of infections were identified among 5405 confirmed cases outside Hubei as reported by February 2, 2020. Based on this information, we find the serial interval having an average of 4.41 days with a standard deviation of 3.17 days and the infectious period having an average of 10.91 days with a standard deviation of 3.95 days.ConclusionsThe controlled reproduction number is declining. It is lower than one in most regions of China, but is still larger than one in Hubei Province. Sustained efforts are needed to further reduce the Rc to below one in order to end the current epidemic.


2020 ◽  
Author(s):  
Lee Worden ◽  
Rae Wannier ◽  
Micaela Neus ◽  
Jennifer C. Kwan ◽  
Alex Y. Ge ◽  
...  

We estimated time-varying reproduction numbers of COVID-19 transmission in counties and regions of California and in states of the United States, using the Wallinga-Teunis method of estimations applied to publicly available data. The serial interval distribution assumed incorporates wide uncertainty in delays from symptom onset to case reporting. This assumption contributes smoothing and a small but meaningful increase in numerical estimates of reproduction numbers due to the likely existence of secondary cases not yet reported. Transmission in many areas of the U.S. may not yet be controlled, including areas in which case counts appear to be stable or slowly declining.


2020 ◽  
Author(s):  
Lingling Zheng ◽  
Qin Kang ◽  
Xiujuan Chen ◽  
Shuai Huang ◽  
Dong Liu ◽  
...  

Abstract Objective: In this study, we use the time-dependent reproduction number (Rt) to comprise the COVID transmissibility across different countries.Methods: We used data from Jan 20, 2019, to Feb 29, 2020, on the number of newly confirmed cases, obtained from the reports published by the CDC, to infer the incidence of infectious over time. A two-step procedure was used to estimate the Rt. The first step used data on known index-secondary cases pairs, from publicly available case reports, to estimate the serial interval distribution. The second step estimated the Rt jointly from the incidence data and the information data in the first step. Rt was then used to simulate the epidemics across all major cities in China and typical countries worldwide. Results: Based on a total of 126 index-secondary cases pairs from 4 international regions, we estimated that the serial interval for SARS-2-CoV was 4.18 (IQR 1.92 – 6.65) days. Domestically, Rt of China, Hubei province, Wuhan had fallen below 1.0 on 9 Feb, 10 Feb and 13 Feb (Rt were 0.99±0.02, 0.99±0.02 and 0.96±0.02), respectively. Internationally, as of 26 Feb, statistically significant periods of COVID spread (Rt >1) were identified for most regions, except for Singapore (Rt was 0.92±0.17).Conclusions: The epidemic in China has been well controlled, but the worldwide pandemic has not been well controlled. Worldwide preparedness and vulnerability against COVID-19 should be regarded with more care.


Author(s):  
Lauren C. Tindale ◽  
Michelle Coombe ◽  
Jessica E. Stockdale ◽  
Emma S. Garlock ◽  
Wing Yin Venus Lau ◽  
...  

AbstractBackgroundAs the COVID-19 epidemic is spreading, incoming data allows us to quantify values of key variables that determine the transmission and the effort required to control the epidemic. We determine the incubation period and serial interval distribution for transmission clusters in Singapore and in Tianjin. We infer the basic reproduction number and identify the extent of pre-symptomatic transmission.MethodsWe collected outbreak information from Singapore and Tianjin, China, reported from Jan.19-Feb.26 and Jan.21-Feb.27, respectively. We estimated incubation periods and serial intervals in both populations.ResultsThe mean incubation period was 7.1 (6.13, 8.25) days for Singapore and 9 (7.92, 10.2) days for Tianjin. Both datasets had shorter incubation periods for earlier-occurring cases. The mean serial interval was 4.56 (2.69, 6.42) days for Singapore and 4.22 (3.43, 5.01) for Tianjin. We inferred that early in the outbreaks, infection was transmitted on average 2.55 and 2.89 days before symptom onset (Singapore, Tianjin). The estimated basic reproduction number for Singapore was 1.97 (1.45, 2.48) secondary cases per infective; for Tianjin it was 1.87 (1.65, 2.09) secondary cases per infective.ConclusionsEstimated serial intervals are shorter than incubation periods in both Singapore and Tianjin, suggesting that pre-symptomatic transmission is occurring. Shorter serial intervals lead to lower estimates of R0, which suggest that half of all secondary infections should be prevented to control spread.


Author(s):  
Jesse Knight ◽  
Sharmistha Mishra

AbstractBackgroundThe effective reproductive number Re(t) is a critical measure of epidemic potential. Re(t) can be calculated in near real time using an incidence time series and the generation time distribution—the time between infection events in an infector-infectee pair. In calculating Re(t), the generation time distribution is often approximated by the serial interval distribution—the time between symptom onset in an infector-infectee pair. However, while generation time must be positive by definition, serial interval can be negative if transmission can occur before symptoms, such as in covid-19, rendering such an approximation improper in some contexts.MethodsWe developed a method to infer the generation time distribution from parametric definitions of the serial interval and incubation period distributions. We then compared estimates of Re(t) for covid-19 in the Greater Toronto Area of Canada using: negative-permitting versus non-negative serial interval distributions, versus the inferred generation time distribution.ResultsWe estimated the generation time of covid-19 to be Gamma-distributed with mean 3.99 and standard deviation 2.96 days. Relative to the generation time distribution, non-negative serial interval distribution caused overestimation of Re(t) due to larger mean, while negative-permitting serial interval distribution caused underestimation of Re(t) due to larger variance.ImplicationsApproximation of the generation time distribution of covid-19 with non-negative or negative-permitting serial interval distributions when calculating Re(t) may result in over or underestimation of transmission potential, respectively.


2021 ◽  
Vol 21 (2) ◽  
pp. e00517-e00517
Author(s):  
Ebrahim Rahimi ◽  
Seyed Saeed Hashemi Nazari ◽  
Yaser Mokhayeri ◽  
Asaad Sharhani ◽  
Rasool Mohammadi

Background: The basic reproduction number (R0) is an important concept in infectious disease epidemiology and the most important parameter to determine the transmissibility of a pathogen. This study aimed to estimate the nine-month trend of time-varying R of COVID-19 epidemic using the serial interval (SI) and Markov Chain Monte Carlo in Lorestan, west of Iran. Study design: Descriptive study. Methods: This study was conducted based on a cross-sectional method. The SI distribution was extracted from data and log-normal, Weibull, and Gamma models were fitted. The estimation of time-varying R0, a likelihood-based model was applied, which uses pairs of cases to estimate relative likelihood. Results: In this study, Rt was estimated for SI 7-day and 14-day time-lapses from 27 February-14 November 2020. To check the robustness of the R0 estimations, sensitivity analysis was performed using different SI distributions to estimate the reproduction number in 7-day and 14-day time-lapses. The R0 ranged from 0.56 to 4.97 and 0.76 to 2.47 for 7-day and 14-day time-lapses. The doubling time was estimated to be 75.51 days (95% CI: 70.41, 81.41). Conclusions: Low R0 of COVID-19 in some periods in Lorestan, west of Iran, could be an indication of preventive interventions, namely quarantine and isolation. To control the spread of the disease, the reproduction number should be reduced by decreasing the transmission and contact rates and shortening the infectious period.


2020 ◽  
Author(s):  
Ahmad Khosravi ◽  
Reza Chaman ◽  
Marzieh Rohani-Rasaf ◽  
Fariba Zare ◽  
Shiva Mehravaran ◽  
...  

AbstractObjectivesTo estimate the basic reproduction number (R0) of COVID-19 in the early stage of the epidemic and predict the expected number of new cases in Shahroud, Northeast of Iran.MethodsThe R0 of COVID-19 was estimated using the serial interval distribution and the number of incidence cases. The serial interval was fit with a gamma distribution. The probable incidence and cumulative incidence in the next 30 days were predicted using the assumption that daily incidence follows a Poisson distribution determined by daily infectiousness. Data analysis was done using “earlyR” and “projections” packages in R software.ResultsThe maximum-likelihood value of R0 was 2.7 (95% confidence interval (CI): 2.1 to 3.4) for the COVID-19 epidemic in the early 14 days and decreased to 1.13 (95% CI: 1.03 to 1.25) by the end of the day 41. The expected average number of new cases in Shahroud is 9.0±3.8 case/day, which means an estimated total of 271 (95% CI: 178-383) new cases in the next 30 days.ConclusionsIt is essential to reduce the R0 to values below one. Therefore, we strongly recommend enforcing and continuing the current preventive measures, restricting travel, and providing screening tests for a larger proportion of the population.


Author(s):  
Subhayan Mandal ◽  
Manoj Kumar ◽  
Debasish Sarkar

AbstractWe use publicly available timeline data on the Covid-19 outbreak for nine indian states to calculate the important quantifier of the outbreak, the sought after Rt or the time varying reproduction number of the outbreak. This quantity can be measured in in several ways, e.g. by application of Stochastic compartmentalised SIR (DCM) model, Poissonian likelihood based (ML) model & the exponential growth rate (EGR) model. The third one is known as the effective reproduction number of an outbreak. Here we use, mostly, the second one. It is known as the instantaneous reproduction number for an outbreak. This number can faithfully tell us the success of lockdown measures inside indian states, as containment policy for the spread of Covid-19 viral disease. This can also, indirectly yield notional value of the generation time inteval in different states. In doing this work we employ, pan India serial interval of the outbreak estimated directly from data from January 30th to April 19th, 2020. Simultaneously, in conjunction with the serial interval data, our result is derived from incidences data between March 14th, 2020 to June 1st, 2020, for the said states. We find the lockdown had marked positive effect on the nature of time dependent reproduction number in most of the Indian states, barring a couple. The possible reason for such failures have been investigated.


2020 ◽  
Vol 25 (17) ◽  
Author(s):  
Tapiwa Ganyani ◽  
Cécile Kremer ◽  
Dongxuan Chen ◽  
Andrea Torneri ◽  
Christel Faes ◽  
...  

Background Estimating key infectious disease parameters from the coronavirus disease (COVID-19) outbreak is essential for modelling studies and guiding intervention strategies. Aim We estimate the generation interval, serial interval, proportion of pre-symptomatic transmission and effective reproduction number of COVID-19. We illustrate that reproduction numbers calculated based on serial interval estimates can be biased. Methods We used outbreak data from clusters in Singapore and Tianjin, China to estimate the generation interval from symptom onset data while acknowledging uncertainty about the incubation period distribution and the underlying transmission network. From those estimates, we obtained the serial interval, proportions of pre-symptomatic transmission and reproduction numbers. Results The mean generation interval was 5.20 days (95% credible interval (CrI): 3.78–6.78) for Singapore and 3.95 days (95% CrI: 3.01–4.91) for Tianjin. The proportion of pre-symptomatic transmission was 48% (95% CrI: 32–67) for Singapore and 62% (95% CrI: 50–76) for Tianjin. Reproduction number estimates based on the generation interval distribution were slightly higher than those based on the serial interval distribution. Sensitivity analyses showed that estimating these quantities from outbreak data requires detailed contact tracing information. Conclusion High estimates of the proportion of pre-symptomatic transmission imply that case finding and contact tracing need to be supplemented by physical distancing measures in order to control the COVID-19 outbreak. Notably, quarantine and other containment measures were already in place at the time of data collection, which may inflate the proportion of infections from pre-symptomatic individuals.


Sign in / Sign up

Export Citation Format

Share Document