scholarly journals Influence of Some Microchanges Generated by Different Processing Methods on Selected Tribological Characteristics

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Gheorghe Nagîț ◽  
Laurențiu Slătineanu ◽  
Oana Dodun ◽  
Andrei Marius Mihalache ◽  
Marius Ionuț Rîpanu ◽  
...  

Different processing methods can change the physical–mechanical properties and the microgeometry of the surfaces made by such processes. In turn, such microchanges may affect the tribological characteristics of the surface layer. The purpose of this research was to study the tribological behavior of a test piece surfaces analyzing the changes on the values of the coefficient of friction and loss of mass that appear in time. The surfaces subjected to experimental research were previously obtained by turning, grinding, ball burnishing, and vibroburnishing. The experimental research was performed using a device adaptable to a universal lathe. Mathematical processing of the experimental results led to the establishment of power-type function empirical models that highlight the intensity of the influence exerted by the pressure and duration of the test on the values of the output parameters. It was found that the best results were obtained in the case of applying ball vibroburnishing as the final process.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Huaiju Liu ◽  
Caichao Zhu ◽  
Zhanjiang Wang ◽  
Ye Zhou ◽  
Yuanyuan Zhang

A thermal elastohydrodynamic lubrication (TEHL) model is developed for a coated spur gear pair to investigate the effect of soft coatings and hard coatings on the tribological behavior of such a gear pair during meshing. The coating properties, i.e., the ratio of the Young's modulus between the coating and the substrate, and the coating thickness, are represented in the calculation of the elastic deformation. Discrete convolution, fast Fourier transform (DC-FFT) is utilized for the fast calculation of the surface deformation. The variation of the radius of curvature, the rolling speed, the slide-to-roll ratio, and the tooth load along the line of action (LOA) during meshing is taken into account and the transient squeeze effect is considered in the Reynolds equation. Energy equations of the solids and the oil film are derived. The temperature field and the pressure field are solved iteratively. The tribological behavior is evaluated in terms of the minimum film thickness, the maximum pressure, the temperature rise, the coefficient of friction, and the frictional power loss of the tooth contact during meshing. The results show discrepancies between the soft coating results and hard coating results.


2021 ◽  
Vol 406 ◽  
pp. 448-456
Author(s):  
Oualid Ghelloudj ◽  
Amel Gharbi ◽  
Djamel Zelmati ◽  
Khedidja Bouhamla ◽  
Chems Eddine Ramoul ◽  
...  

This work is a contribution in analyzing structure, tribological behavior and corrosion of AISI L6 hardened tool steel. Structural characterization and tribological behavior of steel were investigated using Optical Microscopy (OM), Scanning electron microscopy (SEM), wear testing by friction on a pin-on-disc Tribometer and corrosion by potentiodynamic polarization. Comparing to the as-received steel, hardening has generated a fine martensitic microstructure causing a 1.5 times hardness increase. Hardening has contributed to improvement of wear resistance as the coefficient of friction has decreased from 0.86 to 0.67μ. An increase in corrosion resistance was observed after hardening treatment.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4363
Author(s):  
Yasemin Yıldıran Avcu ◽  
Okan Yetik ◽  
Mert Guney ◽  
Eleftherios Iakovakis ◽  
Tamer Sınmazçelik ◽  
...  

Ti6Al4V alloy was shot peened by using stainless-steel shots with different sizes (0.09–0.14 mm (S10) and 0.7–1.0 mm (S60)) for two durations (5 and 15 min) using a custom-designed peening system. The shot size was the main parameter modifying the roughness (0.74 µm for S10 vs. 2.27 µm for S60), whereas a higher peening time slightly increased roughness. Hardness improved up to approximately 35% by peening with large shots, while peening time was insignificant in hardness improvement. However, longer peening duration with large shots led to an unwanted formation of micro-cracks and delamination on the peened surfaces. After dry sliding wear tests, the mass loss of peened samples (S60 for 15 min) was 25% higher than that of un-peened samples, while the coefficient of friction decreased by 12%. Plastically deformed regions and micro-scratches were observed on the worn surfaces, which corresponds to mostly adhesive and abrasive wear mechanisms. The present study sheds light on how surface, subsurface and tribological properties of Ti6Al4V vary with shot peening and peening parameters, which paves the way for the understanding of the mechanical, surface, and tribological behavior of shot peened Ti6Al4V used in both aerospace and biomedical applications.


2014 ◽  
Vol 875-877 ◽  
pp. 496-499 ◽  
Author(s):  
Eva Labašová ◽  
Rastislav Ďuriš

The contribution deals with measurement of the coefficient of friction in the sliding joint. Rotanional sliding pair, which was tested, is described in this paper. Their tribological characteristics were measured by test equipment Tribotestor`89. The value of the coefficient of friction for the bushings from brass, aluminium and polyamide for chosen load (the sliding speed, loading, duration) are analysed in the paper. The largest decrease in the size of the coefficient of friction was recorded for bushings from aluminium, its value have decreased by 87.5% during the run up. Decrease of the coefficient of friction was recorded about 82% for bushings from brass and about 72% for bushings from polyamide. Run up lasted 10 minutes in all tests.


Author(s):  
Kali Dass ◽  
SR Chauhan ◽  
Bharti Gaur

An experimental study has been carried out to investigate the mechanical and tribological characteristics of chopped carbon fiber (CCF) reinforced epoxy composites filled with nano-Al2O3 particulates, as a function of fiber and filler contents. The experiments were conducted using a pin-on-disc wear test apparatus under dry sliding conditions. The coefficient of friction and specific wear rate of these composites was determined as a function of applied normal load, sliding velocity, sliding distance, and reinforcement content. The tensile, flexural, and compression strengths of ortho cresol novalac epoxy and chopped carbon fiber (OCNE/CCF) filled composites are found to be within the ranges of 48–58.54 MPa, 115–156.56 MPa, and 48–61.15 MPa. Whereas the tensile, flexural, and compression strengths of OCNE/CCF/Al2O3-filled composites are found to be within the ranges of 96–110 MPa, 176–204.66 MPa, and 72–85.65 MPa, respectively. It has been observed that the coefficient of friction decreases and specific wear rate increases with increase in the applied normal loads. Further increases in the fiber (6 wt%) and particle (3 wt%) contents in the epoxy matrix resulted in a decrease of both the mechanical and tribological properties, but remains above that of the CCF reinforced epoxy composites. The worn surfaces of composites were examined with scanning electron microscopy equipped with energy dispersion X-ray analyzer and X-ray diffraction analysis technique to investigate the wear mechanisms.


2012 ◽  
Vol 184-185 ◽  
pp. 1400-1403
Author(s):  
Li Guo ◽  
Huan Qin Zhu ◽  
Yuan Bao Sun

The tribological behavior of PPS filled with molybdenum-concentrate (MC) deposit from Armenia was studied. The deposit MC was a complex mixture of compounds such as MoS2, SO2, CuS, Al2O3, and others. Whereas MC as the filler in particulate form reduced the steady state wear rate of PPS, the optimum reduction in wear was found to occur with the addition of PTFE along with PPS. The behavior of PPS composites made with MC and PTFE sliding against a steel counterface was investigated as a function of the MC and PTFE proportions, sliding speed, and counterface roughness. Of all the above factors, the change in MC proportion, while PTFE was also present, had the greatest effect on the reduction in wear rate. The variation of the coefficient of friction was found to be in the narrow range of 0.27-0.33. The lowest wear rate was found in the case of PPS+ 17vol.%MC+10vol.%PTFE composite sliding at 1.5 m/s against a counterface roughness of 0.1 μm Ra.


2010 ◽  
Vol 447-448 ◽  
pp. 681-684 ◽  
Author(s):  
S. Twardy ◽  
Otmann Riemer ◽  
Ekkard Brinksmeier

Micro milling is an appropriate technology for the flexible production of precise micro molds with complex shapes for metal forming processes (e.g. micro deep drawing). Besides high form accuracy micro ball end milling also provides a specific surface topography which can enhance the tribological behavior during the forming processes. This paper is focusing on the tribological behavior of micro structured surfaces generated by micro milling compared to smooth surfaces. The coefficient of friction was investigated on a pin-on-disc test stand for different materials. The results of the tribological tests suggest a relationship between micro structure and coefficient of friction. Finally, the correlations between machining parameters and tribological behavior will be discussed.


Sign in / Sign up

Export Citation Format

Share Document