Effect of the Treatments of the Surface on Mechanical Performance of Concrete Containing Chemical Admixtures

Author(s):  
Catherine Campbell ◽  
Gareth Jackson ◽  
Mohammed Sonebi ◽  
Su Taylor

The aim of this paper is to investigate two different concrete mixes, one with Limestone Powder (LSP) and the other with Ground Granulated Blast-Furnace Slag (GGBS), both mixes containing superplasticizer, in order to analyse their compressive strengths at 7 and 28 days, their abrasion resistance and slip resistance. The two mixes are treated with two different surface protection finishers, applied on the surface after the concrete has cured and analysis of how these finishers affect the abrasion resistance and slip resistance of the concrete is discussed.

RSC Advances ◽  
2017 ◽  
Vol 7 (58) ◽  
pp. 36460-36472 ◽  
Author(s):  
Jiapei Du ◽  
Yuhuan Bu ◽  
Shenglai Guo ◽  
Leiju Tian ◽  
Zhonghou Shen

In this study, an environmentally friendly epoxy resin is mixed with ground-granulated blast furnace slag (GGBS) for use as a stabilizer to enhance mechanical performance and leaching resistance properties of marine sediments.


Author(s):  
Eti Tirumala Chakrapani ◽  
◽  
A M N Kashyap ◽  
G Anjaneyulu ◽  
M R Manikanta ◽  
...  

Concrete might be the maximum substantially used construction material in the global with approximately six billion tones being produced each year. It is best subsequent to water in phrases of in keeping with-capita consumption. However, environmental sustainability is at stake both in terms of damage due to the extraction of raw material and CO2 emission all through cement manufacture. This brought pressures on researchers for the discount of cement intake by means of partial substitute of cement by using supplementary materials. These materials may be obviously happening, industrial wastes or by way of-products that are less energy extensive. Fly ash and Ground Granulated Burnt Slag (GGBS) are selected specifically based totally on the standards of fee and their long lasting qualities., Not best this, Environmental pollution also can be decreased to a point due to the fact the emission of dangerous gases like carbon monoxide & carbon dioxide are very restricted. These substances (referred to as pozzalonas) when combined with calcium hydroxide, reveals cementitious compositions. Most commonly used pozzalonas are fly ash, silica fume, met kaolin, ground granulated blast furnace slag (GGBS). This wishes to look at the admixtures performance whilst combined with concrete so as to ensure a discounted existence cycle fee. The present research consists of three phases and reports the specializes in investigating characteristics of M35grade concrete .In the 1st phase the behavior of standard and SCM concrete (7.5%FA and 7.5%GGBS) of M35 grade specimens with different percentages of chemical admixtures curing with acids such as HCL. 2nd phase the same grade of specimens curing with Alkaline such as NaOH and in the 3rd phase the same grade of specimens curing with sulphate solution MgSO4 and finally assess the losses of mechanical properties and durability considerations of the concrete due to these conditions were reported.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012173
Author(s):  
Ganesh Naidu Gopu ◽  
Sri Durga Vara Prasad M ◽  
Swaroop Babu Mylavarpu ◽  
S Ankarao

Abstract Most superior cements delivered today contain materials notwithstanding Portland cement to help accomplish the compressive strength or solidness execution. These materials include fly ash, silica fume and ground-granulated blast furnace slag used discretely or in coalescence. Concurrently, chemical admixtures such as high-range di-hydrogen monoxide-reducers are needed to ascertain that the concrete is facile to convey, place and culminate. For high-strength cements, a blend of mineral and compound admixtures is almost consistently fundamental to guarantee accomplishment of the necessary strength. The Primer investigations have been done on concrete, Fine aggregate and coarse aggregate. The Blend Extent for M200 grade concrete is determined 1: 0.313: 1.463 by following the plan methodology given by ACI Strategy. By keeping up the w/c proportion as 0.25, the multi day Compressive strength, Flexural strength and Split elasticity of cement at 3% of silica fume and 1.5% of conplast have been accomplished as 163.33 N/mm2, 8.4 N/mm2& 9.5 N/mm2 separately. The variety of solidarity of cement with the variety of silica fume is appeared in bar outline. The strength of the concrete might be as yet expanded by decreasing the w/c proportion and expanding the level of silica fume


2017 ◽  
Vol 24 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Turhan Bilir ◽  
Isa Yüksel ◽  
Ilker Bekir Topcu ◽  
Osman Gencel

AbstractAbrasion resistance is one of the most important durability properties of concrete. Especially, highway, airport and industrial floor pavements should be resistant to abrasion. Recently, many research studies have been carried out on the utilization of industrial by-products in concrete. Granulated blast-furnace slag (GBFS) and bottom ash (BA) are two of these by-products. BA is not generally utilized in concrete and has a limited usage. It is mostly dumped, leading to additional costs and environmental problems. On the other hand, both GBFS and BA have potential for concrete production to provide sustainability. They can substitute fine aggregate thanks to their positive effects on concrete durability. Therefore, the aim of this study was to investigate the abrasion resistance of concretes produced with GBFS and BA substituting fine aggregate. Three different concrete series were produced by replacing fine aggregate with GBFS, BA and both of them by mixing them at equal ratios. The replacement ratios of by-products were 10%, 20%, 30%, 40% and 50% by volume. Compressive strength and Bohme abrasion tests were conducted on series. Results were compared to each other. It can be said that abrasion resistance can be improved by these by-products.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-4
Author(s):  
Eti tirumala Chakrapani* ◽  
A M N Kashyap ◽  
Anjaneyulu, G ◽  
Manikanta M R

Concrete might be the maximum substantially used construction material in the global with approximately six billion tones being produced each year. It is best subsequent to water in phrases of in keeping with-capita consumption. However, environmental sustainability is at stake both in terms of damage due to the extraction of raw material and CO2 emission all through cement manufacture. This brought pressures on researchers for the discount of cement intake by means of partial substitute of cement by using supplementary materials. These materials may be obviously happening, industrial wastes or by way of-products that are less energy extensive. Fly ash and Ground Granulated Burnt Slag (GGBS) are selected specifically based totally on the standards of fee and their long lasting qualities., Not best this, Environmental pollution also can be decreased to a point due to the fact the emission of dangerous gases like carbon monoxide & carbon dioxide are very restricted. These substances (referred to as pozzalonas) when combined with calcium hydroxide, reveals cementitious compositions. Most commonly used pozzalonas are fly ash, silica fume, met kaolin, ground granulated blast furnace slag (GGBS). This wishes to look at the admixtures performance whilst combined with concrete so as to ensure a discounted existence cycle fee. The present research consists of three phases and reports the specializes in investigating characteristics of M35grade concrete .In the 1st phase the behavior of standard and SCM concrete (7.5%FA and 7.5%GGBS) of M35 grade specimens with different percentages of chemical admixtures curing with acids such as HCL. 2nd phase the same grade of specimens curing with Alkaline such as NaOH and in the 3rd phase the same grade of specimens curing with sulphate solution MgSO4 and finally assess the losses of mechanical properties and durability considerations of the concrete due to these conditions were reported.


Sign in / Sign up

Export Citation Format

Share Document