device location
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 25)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Lei Zhang ◽  
Aref Darzi ◽  
Sepehr Ghader ◽  
Michael L. Pack ◽  
Chenfeng Xiong ◽  
...  

The research team has utilized privacy-protected mobile device location data, integrated with COVID-19 case data and census population data, to produce a COVID-19 impact analysis platform that can inform users about the effects of COVID-19 spread and government orders on mobility and social distancing. The platform is being updated daily, to continuously inform decision-makers about the impacts of COVID-19 on their communities, using an interactive analytical tool. The research team has processed anonymized mobile device location data to identify trips and produced a set of variables, including social distancing index, percentage of people staying at home, visits to work and non-work locations, out-of-town trips, and trip distance. The results are aggregated to county and state levels to protect privacy, and scaled to the entire population of each county and state. The research team is making their data and findings, which are updated daily and go back to January 1, 2020, for benchmarking, available to the public to help public officials make informed decisions. This paper presents a summary of the platform and describes the methodology used to process data and produce the platform metrics.


Data ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 91
Author(s):  
Carlos Garcia Calatrava ◽  
Yolanda Becerra Fontal ◽  
Fernando M. Cucchietti ◽  
Carla Diví Cuesta

The recent great technological advance has led to a broad proliferation of Monitoring Infrastructures, which typically keep track of specific assets along time, ranging from factory machinery, device location, or even people. Gathering this data has become crucial for a wide number of applications, like exploration dashboards or Machine Learning techniques, such as Anomaly Detection. Time-Series Databases, designed to handle these data, grew in popularity, becoming the fastest-growing database type from 2019. In consequence, keeping track and mastering those rapidly evolving technologies became increasingly difficult. This paper introduces the holistic design approach followed for building NagareDB, a Time-Series database built on top of MongoDB—the most popular NoSQL Database, typically discouraged in the Time-Series scenario. The goal of NagareDB is to ease the access to three of the essential resources needed to building time-dependent systems: Hardware, since it is able to work in commodity machines; Software, as it is built on top of an open-source solution; and Expert Personnel, as its foundation database is considered the most popular NoSQL DB, lowering its learning curve. Concretely, NagareDB is able to outperform MongoDB recommended implementation up to 4.7 times, when retrieving data, while also offering a stream-ingestion up to 35% faster than InfluxDB, the most popular Time-Series database. Moreover, by relaxing some requirements, NagareDB is able to reduce the disk space usage up to 40%.


2021 ◽  
Author(s):  
Mofeng Yang ◽  
Yixuan Pan ◽  
Aref Darzi ◽  
Sepehr Ghader ◽  
Chenfeng Xiong ◽  
...  

Author(s):  
Michał Socha ◽  
Wojciech Górka ◽  
Marcin Michalak

The paper presents an original approach to device location detection in a building. The new method is based on a map of individual interiors, drawn up based on the measurements of the strength of wireless network signals for each building venue. The device is initially assigned to all venues whose descriptions sufficiently correspond with the current measurements taken by the device. A fuzzy assignment level for each of the potentially considered venues depends on the difference between the averaged network strengths for the venue and the signal strengths currently measured with the device for localization purposes. Ultimately, the device is assigned to the venue with the highest level of assignment.


2021 ◽  
Author(s):  
Mofeng Yang ◽  
Yixuan Pan ◽  
Aref Darzi ◽  
Sepehr Ghader ◽  
Chenfeng Xiong ◽  
...  

Abstract Mobile device location data (MDLD) contains abundant travel behavior information to support travel demand analysis. Compared to traditional travel surveys, MDLD has larger spatiotemporal coverage of the population and its mobility. However, ground truth information such as trip origins and destinations, travel modes, and trip purposes are not included by default. Such important attributes must be imputed to maximize the usefulness of the data. This paper targets at studying the capability of MDLD on estimating travel mode share at aggregated levels. A data-driven framework is proposed to extract travel behavior information from MDLD. The proposed framework first identifies trip ends with a modified Spatiotemporal Density-based Spatial Clustering of Applications with Noise (ST-DBSCAN) algorithm. Then three types of features are extracted for each trip to impute travel modes using machine learning models. A labeled MDLD dataset with ground truth information is used to train the proposed models, resulting in a 95% recall rate in identifying trip ends and a 93% 10-fold cross-validation accuracy in imputing the five travel modes (drive, rail, bus, bike and walk) with a Random Forest (RF) classifier. The proposed framework is then applied to two large-scale MDLD datasets, covering the Baltimore-Washington metropolitan area and the United States, respectively. The estimated trip distance, trip time, trip rate distribution, and travel mode share are compared against travel surveys at different geographies. The results suggest that the proposed framework can be readily applied in different states and metropolitan regions with low cost in order to study multimodal travel demand, understand mobility trends, and support decision making.


2021 ◽  
Author(s):  
Forrest W. Crawford ◽  
Sydney A. Jones ◽  
Matthew Cartter ◽  
Samantha G. Dean ◽  
Joshua L. Warren ◽  
...  

AbstractClose contact between people is the primary route for transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). We sought to quantify interpersonal contact at the population-level by using anonymized mobile device geolocation data. We computed the frequency of contact (within six feet) between people in Connecticut during February 2020 – January 2021. Then we aggregated counts of contact events by area of residence to obtain an estimate of the total intensity of interpersonal contact experienced by residents of each town for each day. When incorporated into a susceptible-exposed-infective-removed (SEIR) model of COVID-19 transmission, the contact rate accurately predicted COVID-19 cases in Connecticut towns during the timespan. The pattern of contact rate in Connecticut explains the large initial wave of infections during March–April, the subsequent drop in cases during June–August, local outbreaks during August–September, broad statewide resurgence during September–December, and decline in January 2021. Contact rate data can help guide public health messaging campaigns to encourage social distancing and in the allocation of testing resources to detect or prevent emerging local outbreaks more quickly than traditional case investigation.One sentence summaryClose interpersonal contact measured using mobile device location data explains dynamics of COVID-19 transmission in Connecticut during the first year of the pandemic.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 270
Author(s):  
Wen-Cheng Vincent Wang ◽  
Shih-Chun Candice Lung ◽  
Chun-Hu Liu ◽  
Tzu-Yao Julia Wen ◽  
Shu-Chuan Hu ◽  
...  

Small low-cost sensing (LCS) devices enable assessment of close-to-reality PM2.5 exposures, though their data quality remains a challenge. This work evaluates the precision, accuracy, wearability and stability of a wearable particle LCS device, Location-Aware Sensing System (LASS, with Plantower PMS3003), which is 104 × 66 × 46 mm3 in size and less than 162 g in weight. Real-time particulate matter (PM) exposures in six major Asian transportation modes were assessed. Side-by-side laboratory evaluation of PM2.5 between a GRIMM aerosol spectrometer and sensors yielded a correlation of 0.98 and a mean absolute error of 0.85 µg/m3. LASS readings collected in the summer of 2016 in Taiwan were converted to GRIMM-comparable values. Mean PM2.5 concentrations obtained from GRIMM and converted LASS values of the six different transportation microenvironments were 16.9 ± 11.7 (n = 1774) and 17.0 ± 9.5 (n = 3399) µg/m3, respectively, showing a correlation of 0.93. The average one-hour PM2.5 exposure increments (concentration increase above ambient levels) from converted LASS values for Mass Rapid Transit (MRT), bus, car, scooter, bike and walk were 15.6, 6.7, −19.2, 8.1, 6.1 and 7.1 µg/m3, respectively, very close to those obtained from GRIMM. This work is one of the earliest studies applying wearable particulate matter (PM) LCS devices in exposure assessment in different transportation modes.


2020 ◽  
Vol 1 (4) ◽  
pp. 371-381
Author(s):  
Rafa Fadilla ◽  
Andi Nurul Isri Indriany Idhil ◽  
Monika Ayu Puji Anggraini ◽  
Ajeng Kusuma Dewi ◽  
Mochammad Rofi Sanjaya ◽  
...  

Many infant mortality rates are due to premature events. Premature babies are at high risk for hypothermia and hyperbilirubinemia. To overcome this, an incubator can be used as a warmer and light therapy as blue light therapy for yellow babies. However, both medical devices have still been found using manual control. If the health worker is tired of working and manually controlling both devices, it can put the baby at risk. Multifunctional infant incubator based on ESP32, which is an infant incubator equipped with phototherapy and a mechanical swing. This multifunctional baby incubator has the ability to warm the baby's body, the baby yellow light therapy, and can calm the baby when crying. This tool can be monitored remotely using the Internet of Things (IoT). The sensors used are the DHT22 sensor and the sound sensor. Multifunctional baby incubator can make it easier for hospital or basic health care facility level to monitor baby's health in real time without being at the device location and the resulting data can be stored neatly.


Sign in / Sign up

Export Citation Format

Share Document