scholarly journals A computational scheme for calculating the temperature field when oil production problems

Author(s):  
Anastasia S. Ovchinnikova ◽  

The paper presents an approach to coupled modeling of hydrodynamic and thermal processes occurring in the oil reservoir during field development using thermal methods of enhanced oil recovery. To simulate the processes of non-isothermal multiphase flow, an approach based on implicit calculation of pressure using the finite element method and an explicit calculation of phase saturations is used. A computational scheme for calculating the temperature field is considered. This scheme makes it possible to take into account both heat transfer between phases and heat transfer of a fluid mixture and matrix-rock. In order to take into account the effect of thermal conductivity, a coefficient characterizing the rate of heat transfer between the fluid mixture and the rock is used. The proposed scheme also takes into account the effect of the temperature field on the phases flow in the field reservoir and provides for the possibility of heat sources and sinks occured due to chemical reactions or thermodynamic processes in gaseous phases. Numerical experiments were carried out on a model of a real oil field obtained as a result of history matching of well data. The model contains a large number of wells and is characterized by a high heterogeneity of the porous medium. The applicability of the considered computational scheme is demonstrated on the example of modeling hot water injection into wells crossing a formation with super-viscous oil. The efficiency of thermal methods for the development of super-viscous oil fields is shown. When hot water was injected into the reservoir, the increase in oil production was about 25 % due to a significant decrease in oil viscosity. The time spent for calculating the temperature field while simulating a multiphase flow did not exceed 6 % of the total computational time.

Author(s):  
Qi Min ◽  
Li Zhang ◽  
Hongtao Wang ◽  
Junpeng Zhai

A special-shaped water tank with large aspect ratio and limited volume for cooling was investigated using computational fluid dynamics. The influence of a separator on the heat transfer ability in the water tank is analyzed. When there is no separator, the arrangement of cooling pipes is very important to the heat transfer and temperature field in the water tank. The total heat flux of the pipe bundle and the temperature field will become bad if the pipe bundle is arranged not uniform in the water tank. Adding a separator can greatly enhance the integral natural convection of cold and hot water in the water tank and a uniform temperature field and regular velocity field could be got. The heat transfer ability for the structure with a separator is better than the structure without a separator, and is not sensible to the arrangement of the pipe bundle. The heat transfer ability also did not change when the position of separator and pipe bundle exchanged, and is not a strong function of the distance between separator and the pipe bundle or the wall of the water tank. Finally, the inclination of the water tank is discussed.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 849
Author(s):  
Xiaotong Luo ◽  
Jiachuan Yu ◽  
Bo Wang ◽  
Jingtao Wang

The heat transfer and hydrodynamics of particle flows in stirred tanks are investigated numerically in this paper by using a coupled CFD–DEM method combined with a standard k-e turbulence model. Particle–fluid and particle–particle interactions, and heat transfer processes are considered in this model. The numerical method is validated by comparing the calculated results of our model to experimental results of the thermal convection of gas-particle flows in a fluidized bed published in the literature. This coupling model of computational fluid dynamics and discrete element (CFD–DEM) method, which could calculate the particle behaviors and individual particle temperature clearly, has been applied for the first time to the study of liquid-solid flows in stirred tanks with convective heat transfers. This paper reports the effect of particles on the temperature field in stirred tanks. The effects on the multiphase flow convective heat transfer of stirred tanks without and with baffles as well as various heights from the bottom are investigated. Temperature range of the multiphase flow is from 340K to 350K. The height of the blade is varied from about one-sixth to one-third of the overall height of the stirred tank. The numerical results show that decreasing the blade height and equipping baffles could enhance the heat transfer of the stirred tank. The calculated temperature field that takes into account the effects of particles are more instructive for the actual processes involving solid phases. This paper provides an effective method and is helpful for readers who have interests in the multiphase flows involving heat transfers in complex systems.


Author(s):  
Youqiang Liao ◽  
Xiaohui Sun ◽  
Zhiyuan Wang ◽  
Baojiang Sun

Abstract Hydrate is ice-like solid non-stoichiometric crystalline compound, which is stable at favorable low temperature and high-pressure conditions. The predominant gas component stored in naturally-occurring hydrate bearing sediment is CH4 and is estimated about 3000–20000 trillion cubic meter worldwide. Thus, it has attracted significant research interests as an energy source from both academic and industry for the past two decades. Ensuring drilling safety is much important to realize efficient exploitation of hydrate source. Additionally, accurate prediction of wellbore temperature field is of great significance to the design of drilling fluid and cement slurry and the analysis of wellbore stability. However, the heat transfer process in wellbore and hydrate layer during drilling through hydrate formation is a complex phenomenon. The calculation method used in the conventional formation cannot be fully applied to hydrate reservoir drilling, largely due to the complex interactions between the hydrate decomposition, multiphase flow and heat transfer behaviors. In this study, an improved thermal model of wellbore for hydrate layer drilling process is presented by coupling the dynamic decomposition of hydrate, the transportation of hydrate particles in cuttings and heat transfer behaviors in multiphase flow. The distribution of temperature field and rules of hydrate decomposition both in wellbore and hydrate layers are thoroughly analyzed with case study, which is very helpful for the designing drilling parameters, avoiding the gas kick accidents. As well as making a detailed guidance of wellbore stability analysis. This proposed mathematical model is a more in-depth extension of the conventional temperature field prediction model of wellbore, it can present some important implications for drilling through gas–hydrate formation for practical projects.


2015 ◽  
Vol 22 (4) ◽  
pp. 329-343 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Lukas Ohanka ◽  
Zuzana Brodnianska

2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


2011 ◽  
Vol 675-677 ◽  
pp. 987-990
Author(s):  
Ling Tang ◽  
Xu Dong Wang ◽  
Hai Jing Zhao ◽  
Man Yao

In this paper, the flow, heat transfer and stress during solidification process of the machine tool bed weighed about 2.5ton that has been optimized by structural topologymethod, was calculated with ProCAST software, and the causes of the crack forming in the casting of the machine tool bed was analysed. According to the calculation results, the structural design of the local part where cracks tends to form has been improved, and the heat transfer and the stress are calculated again. By comparing the temperature field with filling of molten cast iron and without filling, it has been found that there was little effect of filling on the results of temperature distribution of the cast, therefore the effect of filling can be ignored in the following temperature field calculation to save computation time. The model has been simplified in the stress field calculation with considering the complexity of the machine tool bed and the cost of computation. Then, the merits and demerits of the original design and the improved design are compared and analyzed depending on the calculated temperature and stress results. It is suggested that the improved one could get a more uniform temperature distribution and then the trend of the crack occurring can be greatly reduced. These results could provide a guide for the actual casting production, achieving the scientific control of the production of castings, ensuring the quality of the castings.


Sign in / Sign up

Export Citation Format

Share Document