scholarly journals Structural Design of Extruded Profiles Based on Simulation

2021 ◽  
Vol 2109 (1) ◽  
pp. 012022
Author(s):  
Dezhao Qin ◽  
Binxia Yuan ◽  
Jianben Liu ◽  
Yan Liu

Abstract In this paper, through the introduction of ABH related theory, a variety of optimized structures are established and compared. By changing the layout of holes in extruded profiles, the vibration characteristics of extruded profiles are studied by using the control variable method. It is found that for single extrusion profile, the through hole (the radius is 8mm to 10mm, the chamfer is 30 degrees) compared with the structure without holes, the natural frequency of the structure is increased by 7Hz from the first order to 20 Hz from the seventh order. For the spliced extruded profiles, the wedge-shaped hole structure with 8mm to 10mm has better vibration damping performance. The application of ABH structure can effectively improve the vibration characteristics of extruded profiles.

2014 ◽  
Vol 556-562 ◽  
pp. 763-766
Author(s):  
Wei Chen ◽  
Qing Xuan Jia ◽  
Han Xu Sun ◽  
Si Cheng Nian

The vibration of the induction synchronization segment (ISS) have an important influence on the parcel loading accuracy and the service life of the parcel sorting machine (PSM). The vibration model of the ISS is established by using the finite element method. And the analysis of the structural design impact on the natural frequency of the ISS is provided. The relationship between the operation frequency and the natural frequency of the ISS is obtained by means of the modal simulation analysis. The vibration characteristics of the ISS can provide reference frame for the design.


2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


2021 ◽  
pp. 096739112110033
Author(s):  
TG Sreekanth ◽  
M Senthilkumar ◽  
S Manikanta Reddy

Delamination is definitely an important topic in the area of composite structures as it progressively worsens the mechanical performance of fiber-reinforced polymer composite structures in its service period. The detection and severity analysis of delaminations in engineering areas like the aviation industry is vital for safety and economic considerations. The existence of delaminations varies the vibration characteristics such as natural frequencies, mode shapes, etc. of composites and hence this indication can be effectively used for locating and quantifying the delaminations. The changes in vibration characteristics are considered as inputs for the inverse problem to determine the location and size of delaminations. In this paper Artificial Neural Network (ANN) is used for delamination evaluationof glass fiber-reinforced composite beams using natural frequency as typical vibration parameter. The Finite Element Analysis is used for generating the required dataset for ANN. The frequency-based delamination prediction technique is validated by finite element models and experimental modal analysis. The results indicate that the ANN-based back propagation algorithm can predict the location and size of delaminations in composites with good accuracy for numerical natural frequency data but the accuracy is comparitivelyless for experimental natural frequency data.


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Ramin M. H. Khorasany ◽  
Stanley G. Hutton

Analysis of the linear vibration characteristics of unconstrained rotating isotropic thin disks leads to the important concept of “critical speeds.” These critical rotational speeds are of interest because they correspond to the situation where a natural frequency of the rotating disk, as measured by a stationary observer, is zero. Such speeds correspond physically to the speeds at which a traveling circumferential wave, of shape corresponding to the mode shape of the natural frequency being considered, travel around the disk in the absence of applied forces. At such speeds, according to linear theory, the blade may respond as a space fixed stationary wave and an applied space fixed dc force may induce a resonant condition in the disk response. Thus, in general, linear theory predicts that for rotating disks, with low levels of damping, large responses may be encountered in the region of the critical speeds due to the application of constant space fixed forces. However, large response invalidates the predictions of linear theory which has neglected the nonlinear stiffness produced by the effect of in-plane forces induced by large displacements. In the present paper, experimental studies were conducted in order to measure the frequency response characteristics of rotating disks both in an idling mode as well as when subjected to a space fixed lateral force. The applied lateral force (produced by an air jet) was such as to produce displacements large enough that non linear geometric effects were important in determining the disk frequencies. Experiments were conducted on thin annular disks of different thickness with the inner radius clamped to the driving arbor and the outer radius free. The results of these experiments are presented with an emphasis on recording the effects of geometric nonlinearities on lateral frequency response. In a companion paper (Khorasany and Hutton, 2010, “Vibration Characteristics of Rotating Thin Disks—Part II: Analytical Predictions,” ASME J. Mech., 79(4), p. 041007), analytical predictions of such disk behavior are presented and compared with the experimental results obtained in this study. The experimental results show that in the case where significant disk displacements are induced by a lateral force, the frequency characteristics are significantly influenced by the magnitude of forced displacements.


2011 ◽  
Vol 675-677 ◽  
pp. 999-1002 ◽  
Author(s):  
Xiao Cong He

Self-pierce riveting (SPR) technology offers an alternative to resistance spot welding (RSW) for joining sheet materials. It has been found that the SPR technology produced a much stronger joint than the RSW in fatigue test. For efficient design of SPR structures, the knowledge of dynamic characteristics of the SPR beams is essential. In this paper, the free transverse vibration characteristics of single lap-jointed cantilevered SPR beams are investigated in detail. The focus of the analysis is to reveal the influence on the natural frequency and natural frequency ratio of these beams caused by variations in the material properties of sheet materials to be jointed. It is shown that the transverse natural frequencies of single lap jointed cantilevered SPR beams increase significantly as the Young’s modulus of the sheet materials increases, but change slightly corresponding to the change in Poisson’s ratio. It is also found that the material density of the sheets have significant effects on the free transverse vibration characteristics of the beams.


2016 ◽  
Vol 821 ◽  
pp. 288-294 ◽  
Author(s):  
George Juraj Stein ◽  
Peter Tobolka ◽  
Rudolf Chmúrny

A novel approach to vibration attenuation, based on the eddy current principle, is described. The combined effects of all magnetic forces acting in the oscillatory system attenuate frame vibrations and, concurrently, decrease the damped natural frequency. A mathematical model of the forces balance in the oscillatory system was derived before. Some experimental results from a mock-up machine frame excited by an asynchronous motor are presented.


Author(s):  
Dumitru I. Caruntu ◽  
Jose C. Solis Silva

The nonlinear response of an electrostatically actuated cantilever beam microresonator sensor for mass detection is investigated. The excitation is near the natural frequency. A first order fringe correction of the electrostatic force, viscous damping, and Casimir effect are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for uniform microresonators with mass deposition and without are reported.


Author(s):  
Xianhai Yang ◽  
Yuguo Yang

The loss factor of peanut seeds during seeding is high due to the serious friction between the seed and the protection panel. Aiming at solving this problem, a new type of lateral cylindrical-shaped hole structure on the vertical cylinder was put forward for the peanut seeding device. To analyze the device, the kinematics and the force bearing models have been constructed for the peanut inside the seed protection area. The explicit formulas of the maximum and the minimum seed protection angles are derived and the range of the actual protection angle is identified to optimize the design. Both the theoretical analyses and the experimental evaluations have shown that the friction damage on the peanut seed by the protection panel has been reduced in a large proportion by the introduced structure. It shows that not only the seeding performance has been improved but also the used material of the protection panel has been saved.


Sign in / Sign up

Export Citation Format

Share Document