scholarly journals Pyrrhotite–silicate melt partitioning of rhenium and the deep rhenium cycle in subduction zone

Geology ◽  
2021 ◽  
Author(s):  
Shuo Xue ◽  
Yuan Li

The Re-Os isotopic system serves as an important tracer of recycled crust in Earth’s deep mantle because of the large Re/Os ratios and time-integrated enrichment of radiogenic Os in Earth’s crust. However, the Re distribution in Earth’s known reservoirs is mass imbalanced, and the behavior of Re during subduction remains little understood. We performed laboratory experiments to determine the partition coefficients of Re between pyrrhotite and silicate melt (DRepo/sm) at 950–1080 °C, 1–3 GPa, and oxygen fugacities (in log units relative to the fayalite-magnetite-quartz [FMQ] buffer) of FMQ –1.3 to FMQ +2. The obtained DRepo/sm values are 200–25,000, which increase with decreasing oxygen fugacity and the total iron content (FeOtot) of silicate melt but decrease with increasing temperature or decreasing pressure. Applying DRepo/sm to constrain the behavior of Re during slab melting demonstrates that slab melts contribute minimal Re to the sub-arc mantle, with most Re dissolved in sulfides subducted into Earth’s deep mantle. Deep storage of recycled oceanic basalts and sediments can explain the mass imbalance of Re in Earth’s primitive mantle, depleted mantle, and crust.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicholas L. Payne ◽  
Simon A. Morley ◽  
Lewis G. Halsey ◽  
James A. Smith ◽  
Rick Stuart-Smith ◽  
...  

AbstractExtrapolating patterns from individuals to populations informs climate vulnerability models, yet biological responses to warming are uncertain at both levels. Here we contrast data on the heating tolerances of fishes from laboratory experiments with abundance patterns of wild populations. We find that heating tolerances in terms of individual physiologies in the lab and abundance in the wild decline with increasing temperature at the same rate. However, at a given acclimation temperature or optimum temperature, tropical individuals and populations have broader heating tolerances than temperate ones. These congruent relationships implicate a tight coupling between physiological and demographic processes underpinning macroecological patterns, and identify vulnerability in both temperate and tropical species.


Clay Minerals ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 223-235 ◽  
Author(s):  
Raúl Fernández ◽  
Ana Isabel Ruiz ◽  
Jaime Cuevas

AbstractConcrete and bentonite are being considered as engineered barriers for the deep geological disposal of high-level radioactive waste in argillaceous rocks. Three hydrothermal laboratory experiments of different scalable complexity were performed to improve our knowledge of the formation of calcium aluminate silicate hydrates (C-A-S-H) at the interface between the two materials: concretebentonite transport columns, lime mortar-bentonite transport columns and a portlandite- (bentonite and montmorillonite) batch experiment. Precipitation of C-A-S-H was observed in all experiments. Acicular and fibrous morphologies with certain laminar characteristics were observed which had smaller Ca/Si and larger Al/Si ratios with increasing temperature and lack of accessory minerals. The compositional fields of these C-A-S-H phases formed in the experiments are consistent with Al/(Si+Al) ratios of 0.2– 0.3 described in the literature. The most representative calcium silicate hydrate (C-S-H) phase from the montmorillonite–cement interface is Al-tobermorite. Structural analyses revealed a potential intercalation or association of montmorillonite and C-A-S-H phases at the pore scale.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Satu Ojala ◽  
Ulla Lassi ◽  
Paavo Perämäki ◽  
Riitta L. Keiski

Catalytic oxidation is a feasible and affordable technology for solvent emission abatement. However, finding optimal operation conditions is important, since they are strongly dependent on the application area of VOC incineration. This paper presents the results of the laboratory experiments concerning four most central parameters, that is, effects of concentration, gas hourly space velocity (GHSV), temperature, and moisture on the oxidation of n-butyl acetate. Both fresh and industrially aged commercial Pt/Al2O3catalysts were tested to determine optimal process conditions and the significance order and level of selected parameters. The effects of these parameters were evaluated by computer-aided statistical experimental design. According to the results, GHSV was the most dominant parameter in the oxidation of n-butyl acetate. Decreasing GHSV and increasing temperature increased the conversion of n-butyl acetate. The interaction effect of GHSV and temperature was more significant than the effect of concentration. Both of these affected the reaction by increasing the conversion of n-butyl acetate. Moisture had only a minor decreasing effect on the conversion, but it also decreased slightly the formation of by products. Ageing did not change the significance order of the above-mentioned parameters, however, the effects of individual parameters increased slightly as a function of ageing.


2021 ◽  
Author(s):  
S J Piercey ◽  
J -L Pilote

New high precision lithogeochemistry and Nd and Hf isotopic data were collected on felsic rocks of the Rambler Rhyolite formation from the Ming volcanogenic massive sulphide (VMS) deposit, Baie Verte Peninsula, Newfoundland. The Rambler Rhyolite formation consists of intermediate to felsic volcanic and volcaniclastic rocks with U-shaped primitive mantle normalized trace element patterns with negative Nb anomalies, light rare earth element-enrichment (high La/Sm), and distinctively positive Zr and Hf anomalies relative to surrounding middle rare earth elements (high Zr-Hf/Sm). The Rambler Rhyolite samples have epsilon-Ndt = -2.5 to -1.1 and epsilon-Hft = +3.6 to +6.6; depleted mantle model ages are TDM(Nd) = 1.3-1.5 Ga and TDM(Hf) = 0.9-1.1Ga. The decoupling of the Nd and Hf isotopic data is reflected in epsilon-Hft isotopic data that lies above the mantle array in epsilon-Ndt -epsilon-Hft space with positive ?epsilon-Hft values (+2.3 to +6.2). These Hf-Nd isotopic attributes, and high Zr-Hf/Sm and U-shaped trace element patterns, are consistent with these rocks having formed as slab melts, consistent with previous studies. The association of these slab melt rocks with Au-bearing VMS mineralization, and their FI-FII trace element signatures that are similar to rhyolites in Au-rich VMS deposits in other belts (e.g., Abitibi), suggests that assuming that FI-FII felsic rocks are less prospective is invalid and highlights the importance of having an integrated, full understanding of the tectono-magmatic history of a given belt before assigning whether or not it is prospective for VMS mineralization.


1994 ◽  
Vol 117 (1-4) ◽  
pp. 361-377 ◽  
Author(s):  
C.L. Peach ◽  
Edmond A. Mathez ◽  
Reid R. Keays ◽  
S.J. Reeves

1990 ◽  
Vol 41 (4) ◽  
pp. 443 ◽  
Author(s):  
SI Kayal ◽  
DW Connell

In all, 23 sediment samples and 8 water column samples from the Brisbane River estuary, Queensland, Australia, were analysed for polycyclic aromatic hydrocarbons (PAHs) in order to assess the field partitioning behaviour of these hydrocarbons. Twelve PAHs, ranging in molecular weight from naphthalene to benzo[a]pyrene, were identified and quantified. Their partition coefficients, indexed to sediment organic carbon and lipid content, were calculated after filtering to remove particulates and making a calculated adjustment for colloids, or organic matter, in the water phase. In logarithmic form, the partition coefficients were related to the physico-chemical properties of the compounds (Kow, Sw, RRT) by relationships having a parabolic shape rather than being linear. However, compounds with log Kow values of less than 5.5 gave linear relationships comparable to, but distinctly different from, those obtained from laboratory experiments. It is suggested that field conditions have distinctive differences from laboratory experiments that do not allow the direct translation of laboratory-based relationships to the natural aquatic environment.


2020 ◽  
Vol 115 (8) ◽  
pp. 1799-1826
Author(s):  
M. Christopher Jenkins ◽  
James E. Mungall ◽  
Michael L. Zientek ◽  
Paul Holick ◽  
Kevin Butak

Abstract In this contribution, we analyze 30 years of mine development data and quantitatively identify the processes that control the grade and tenor of the mineralized rock. An assay database of more than 60,000 samples was used to examine variations in ore grade and tenor of the sulfide mineralization in the J-M reef horizon of the Stillwater Complex along the strike and down the dip of the deposit in the area of the Stillwater mine. We compare these results with data from the East Boulder mine and whole-rock lithogeochemistry of samples collected along the entire strike length of the complex. We find significant variation in the composition of the reef sulfides in different spatial domains of the Stillwater mine area and between the Stillwater and East Boulder mines. Most of the variation in the grade and tenor can be explained by a variation in the mass of silicate magma with which the sulfide liquid equilibrated (i.e., R factor); however, geochemical and textural evidence suggests that parts of the reef may have experienced significant S loss following initial sulfide melt segregation. Some variability in the reef tenor and grade can be attributed to variable amounts of sulfur loss due to low-temperature hydrothermal fluids and the overestimation or underestimation of metal concentrations in reef assays due to the nugget effect. Furthermore, we address the Pd/Pt ratio of the reef samples and suggest that the lower solubility of Pt in the parental silicate melt may have caused the crystallization and removal of Pt alloys at some point before the melt reached sulfide saturation and Pt could partition into the sulfide liquid. This disparity between the prior evolution of Pt and Pd in the silicate melt resulted in the observed Pd/Pt ratio of ~3.65 across all areas of the reef—a value significantly larger than anticipated for primitive mantle-derived magmas.


1983 ◽  
Vol 38 (2) ◽  
pp. 256-266 ◽  
Author(s):  
Albrecht W. Hofmann ◽  
William M. White

Abstract In 166 isotope dilution analyses of Ba, Rb, Cs on fresh basalts from mid-ocean ridges and oceanic islands, Ba/Rb and Cs/Rb ratios are nearly constant. From this, we conclude that Ba/Rb and Cs/Rb ratios are essentially constant in the present-day mantle in spite of large differences in the degree of source depletion or enrichment. As it appears improbable that these ratios could be both constant and non-primitive, we propose that they are representative of the primitive mantle and of the present-day crust-mantle system. We explain this uniformity of relative abundances as follows: the mantle is depleted by subtraction of a mobile phase such as a partial melt or an aqueous fluid. In either case, a significant amount of the mobile phase remains in the residue. Ba, Rb and Cs are among the most highly incompatible elements. Therefore the mobile phase cannot fractionate these elements relative to one another but retains the source ratios of Ba/Rb and Cs/Rb. Also, the amount of mobile phase remaining in the residue is enough to dominate the Ba, Rb and Cs concentrations in the residue. Consequently, neither the mobile phase nor the residue, nor any other portion of the mantle that may be enriched by addition of the mobile phase, will be changed in their relative abundances of Ba, Rb and Cs, even though the absolute abundances of these elements may change by orders of magnitude.The primitive Ba/Rb = 11.3 and Cs/Rb = 12.6 x 10-3 lead to the following estimates for the primitive mantle: Ba = 6.9 ppm (taken from Jagoutz et al. [1]). Rb = 0.61 ppm and Cs = 7.7 ppb.Assuming the earth has a chondritic Sr/Ba ratio of 3.08, we calculate a Rb/Sr ratio of 0.029 for the earth. This corresponds to a present-day 87Sr/ 86Sr of 0.7045. This value lies near the lower limit of the ratios estimated from the correlation of Nd and Sr isotopic abundances in oceanic basalts.The Cs/Rb ratios is about a factor of ten lower than the Cl-chondritic ratio and a factor of three lower than the lunar ratio. This low terrestrial Cs/Rb ratio should be matched by similar values in the continental crust. However, the large range of Cs/Rb ratios found in the crust prevent us from obtaining a meaningful mass balance.


Sign in / Sign up

Export Citation Format

Share Document