dissipation loss
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Adoum Traoré Ndama ◽  
◽  
Elysée Obame Ndong ◽  
Yves Constant Mombo Boussougou ◽  
Grace Jourdain Tsoumou ◽  
...  

Medium-voltage motors dedicated to the applications of traction operate in an environment with strong multi-physics constraints. Electrical insulation of these engines is a complex multi-layered impregnated system which requires a given number of steps during the manufacturing process. In the present study, we theoretically investigated the potential manufacturing insulation defects of traction motors in low frequency domain. The aim is to assess the theoretical ability of dielectric spectroscopy method for the detection of these defects and the extension of the method to others insulation systems. The theoretical study is based on numerical modelling and simulation achieved by using Comsol Multiphysics software. In our numerical modelling the properties of the main dielectric elementary materials are frequency–dependent. The identification of each potential defect is carried out by comparing its equivalent capacitance and dissipation loss spectra with the characteristics of insulation without defect. As the results, all artificial defects are identifiable with a specific relative deviation. The detection of all the defects analysed will need a measuring device with resolution of 0.4%. Keywords—AC electric motors, Capacitance, dielectric, dissipation factor, composite insulation, numerical modelling.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1025
Author(s):  
Zhu Jiang ◽  
Haiying Li ◽  
Guangtai Shi ◽  
Xiaobing Liu

The internal flow is very complex in the multiphase pump, especially in the static impeller, where the flow is more disorganized than that in the impeller wheel, and it will cause greater hydraulic losses. In order to investigate deeply the flow rules within the static impeller, all kinds of the flow losses are analyzed quantificationally in the multiphase pump. Based on the standard SST k-ω turbulence model, selected the helical axial flow multiphase pump as the research object, used the three-dimensional modeling software for the three-dimensional modeling of the flow through parts of the multiphase pump, such as impeller wheel, the static impeller, the suction chamber, and the extrusion chamber. The ANSYS software is used to simulate the three-dimensional flow in static impeller, and the ICEM software was used to divide the mesh of suction chamber, press outlet chamber, moving impeller and static impeller respectively. The results show that the flow within the impeller wheel is more uniform than the static impeller, and larger axial vortexes appear in the static impeller. Compared with the impeller wheel, the effect of the flow rate on the flow within the first static impeller is greater. The friction loss is the largest among all kinds of losses in the static impeller, followed by the turbulence dissipation loss. What’s more, the shock loss and the contraction loss are the smallest, they are all less than 20%, and the main loss within the static impeller are the turbulent dissipation loss and friction loss. The proportion of energy losses in the first and second static impeller is almost the same, which is around 50%, respectively. The results can be used as a reference for the improvement of the hydraulic performance of the multiphase pump.


AIP Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 125001
Author(s):  
Bilin Zhang ◽  
Meng Liu ◽  
Yuming Tang ◽  
Huanguang Wang

2020 ◽  
Vol 10 (13) ◽  
pp. 4464
Author(s):  
Yong-Hyeok Lee ◽  
Sung-yong Cho ◽  
Jae-Young Chung

A non-Foster circuit (NFC) is known as an active broadband matching technique to improve the impedance matching bandwidth of an electrically small antenna (ESA). There has been a vast amount of papers that report the generation of negative impedance using an NFC and its effectiveness on broadband antenna matching. However, only a few discussed its impact on the signal-to-noise-ratio (SNR), which is one of the most important figures-of-merit for a wireless communication system. In this paper, the SNR enhancement due to an NFC was measured and discussed. An NFC was carefully designed to have a low dissipation loss and to meet the stability conditions. The optimized NFC design was fabricated and applied to an ESA length of λ⁄15 at a frequency range of 150 to 300 MHz. The measured results showed that the NFC enhanced the received power of the antenna system by more than 17 dB. However, due to the noise added by the NFC, the SNR enhancement was not guaranteed for some frequency points. Nevertheless, an average of 7.3 dB of SNR improvement over the frequency band of interest is possible based on the experiment result.


2019 ◽  
Vol 36 (4) ◽  
pp. 245-261
Author(s):  
Soumya Ghosh Chowdhury ◽  
Koushik Pal ◽  
Hirak Satpathi ◽  
Abhijit Bandyopadhyay ◽  
Rabindra Mukhopadhyay ◽  
...  

Potential of Sumilink-200 was investigated in a typical natural rubber-based tread compound in connection with its ability to act as a coupling agent for carbon black to reduce hysteresis loss of the compound. Optimum physical properties were obtained at 2 phr loading of Sumilink-200. At this loading, tensile modulus at 300% elongation improved by 9.6% with a reduction in visco-elastic energy dissipation (loss tangent) at 60°C by 8.3% over the control compound. The abrasion resistance properties of the compounds found to remain unaffected with the introduction of Sumilink-200.


2011 ◽  
Vol 215 ◽  
pp. 286-290
Author(s):  
Zhi Xin Li ◽  
Shi Ming Ji ◽  
Li Zhang ◽  
Qiao Ling Yuan ◽  
Ming Sheng Jin

Damping in built-up structures is often caused by energy dissipation or energy loss due to micro-slip along frictional interfaces interaction, which provides a beneficial damping mechanism and plays an important role in the dynamics vibration behavior of such structures, especially the contact stiffness and damping coefficient accounting for the kinematics joint. A detailed study the mechanics derived from the interaction interface between the different components has some embarrassment. And a careful study on the micro-slip phenomenon has been carried out using the finite element method. A classical joint configuration, the plane translation joint, has been used as the model problems. The focus of this paper is to evaluate the effect of dry friction coefficient, the external mechanics on the damping response of frictional joint interfaces interaction, to understand the evolution of the slip-stick regions along a joint interface during loading, and to quantify the amount of energy dissipation/loss during cyclic loading and its dependence on structural and loading parameters.


2010 ◽  
Vol 44 (2) ◽  
pp. 243-245
Author(s):  
N. S. Averkiev ◽  
S. O. Slipchenko ◽  
Z. N. Sokolova ◽  
I. S. Tarasov

Sign in / Sign up

Export Citation Format

Share Document